
 

 

  
Abstract—In this work, the condensation fraction and transition 

temperature of neutral many bosonic system are studied within the 
static fluctuation approximation (SFA). The effect of the potential 
parameters such as the strength and range on the condensate fraction 
was investigated. A model potential consisting of a repulsive step 
potential and an attractive potential well was used. As the potential 
strength or the core radius of the repulsive part increases, the 
condensation fraction is found to be decreased at the same 
temperature. Also, as the potential depth or the range of the attractive 
part increases, the condensation fraction is found to be increased. The 
transition temperature is decreased as the potential strength or the 
core radius of the repulsive part increases, and it increases as the 
potential depth or the range of the attractive part increases. 
 

Keywords—About four key words or phrases in alphabetical 
order, separated by commas 

I. INTRODUCTION 
N this work, Bose-Einstein condensation of neutral many-
bosonic system was studied. A previous study [1] on a 

neutral many-bosonic system was performed using a potential 
step model. In this work we shall go further toward a more 
realistic potential. In general, the interaction potential in 
neutral many-bosonic systems has two terms; a short range 
repulsive part which arises from the Pauli exclusion principle, 
and a long range attractive part which arises from phonon-
phonon interaction. These two parts are modulated in our 
work by a repulsive step potential model of strength A  and 
core radius 1r , and the attractive part is approximated to a 
potential well of depth B  ranging from 1r  to 2r .An extended 
system of N particles in three dimensions each of mass m, and 
occupying a volume Ω  is considered. The effects of potential 
parameters on condensate fraction of the system are 
investigated. The static fluctuation approximation (SFA) [1]-
[4], a relatively new many-body approach in condensed 
matter, is adopted in this study. It is based on a replacement of 
the square of the local-field operator by its mean value. This 
means that the true quantum mechanical spectrum of this 
operator is replaced by a distribution around its mean value. In 
the SFA, the temperature is inserted smoothly from basic 
principles in quantum statistical mechanics, while most of the 
conventional many body theories were established at ground 
state.  
 

M. K. Al-Sugheir, G. Alna’washi, and F. Al-Dweri are with the 
Department of Physics, The Hashemite University, Zarqa, Jordan (phone: 
+962-777792110; fax: +962 (5) 3826613; e-mail: msugh@hu.edu.jo).  

G. Alna’washi is with the Department of Physics, The Hashemite 
University, Zarqa, Jordan (phone: +962-779133453; fax: +962 (5) 3826613; 
e-mail: alnawashi@hu.edu.jo). 

F. Al-Dweri is with the Department of Physics, The Hashemite University, 
Zarqa, Jordan (phone: +962-796647410; fax: +962 (5) 3826613; e-mail: 
faldweri@ugr.es). 

M. Sakhreya is with the Department of Physics, The Hashemite University, 
Zarqa, Jordan. 

 

 
Also, it is relatively simple compared with other many-body 

approaches because it is not based on Green’s functions or 
Feynman diagrams, and in principle it is applicable at least to 
any arbitrary system, either weakly- or strongly-interacting 
[2]. The fascinating phenomena in neutral many-bosonic 
systems such as Bose-Einstein condensation (BEC) motivates 
us to shed more light on these systems, especially in the last 
decade after the first realization of Bose-Einstein condensation 
(BEC) in trapped atomic gases systems observed 
experimentally [5]-[7]. Many techniques, ranging from simple 
mean-field approach to more advanced approaches, have been 
used to study many-bosonic systems. These include a single-
particle Green-function method [8], a density-functional 
approach [9], exact quantum Monte Carlo techniques [10], and 
gauge-theoretic formulation [11]. Most of these techniques are 
formulated at the ground state. They have plagued with 
difficulties and applicability at finite temperature. 

The Bose-Einstein condensation and transition temperature 
in liquid 4He are challenging phenomena. London [12], in 
1938, suggested that the existence of transition temperature in 
liquid 4He might indicate the existence of Bose–Einstein 
condensation. Deeney et al. [13] found that the equilibrium 
density of liquid 4He has a maximum value at the transition 
temperature. The graphical representation of the partition 
function was used [14] to study a one-dimensional Bose gas, 
where the interaction potential was assumed to be a repulsive 
delta function. This method has some advantages; it can be 
applied to confined and infinite systems, it has wide 
applicability, and it can be used to calculate the 
thermodynamic properties.   

Since the discovery of BEC in dilute atomic gases, 
theoretical studies of this and related phenomenon in such 
systems have grown exponentially [10]. The starting point of 
most of the theoretical studies of BEC in confined gases is the 
so-called Gross–Pitaevskii equation (GPE), which is a mean-
field Schrödinger equation for a system of bosons interacting 
through a two-body interaction described by δ-function. The 
GPE equation can only be solved numerically. The first "pure" 
BEC was created by Eric Cornell and Carl Wieman in 1995 
[6]. After that, an independent effort led by Wolfgang Ketterle 
created a condensation in sodium-23 [5] and [7].  

Following this Introduction, the SFA formalism is presented 
in Section Two for neutral many-bosonic system. The so-
called long-range equation and a closed system of nonlinear 
integral equations for a model potential are derived. In Section 
Three, the results are presented and discussed. Finally, in 
Section Four, the article is concluded with a general summary.  

II. STATIC FLUCTUATION APPROXIMATION FORMALISM  
In the SFA we assume that the Hamiltonian can be 

expressed as a linear combination of the local-field operator 

M. Al-Sugheir, M. Sakhreya, G. Alna'washi, F. Al-Dweri 

Bose-Einstein Condensation in Neutral Many 
Bosonic System 

I 

World Academy of Science, Engineering and Technology
International Journal of Physical and Mathematical Sciences

 Vol:6, No:3, 2012 

252International Scholarly and Scientific Research & Innovation 6(3) 2012 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 P
hy

si
ca

l a
nd

 M
at

he
m

at
ic

al
 S

ci
en

ce
s 

V
ol

:6
, N

o:
3,

 2
01

2 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
15

52
.p

df



 

 

kÊ  and the number of particles operator kkk bbn ˆˆˆ += , such 
that [2] 
                                       ∑=

k
kk nEH ˆˆˆ ,                              (1) 

The local-field operator is assumed to be hermitian and 
commutes with the creation operator +

kb̂ and annihilation 

operator kb̂ . 
In the mean field approximation, the local-field operator 

kÊ  is replaced with its mean value: 

                                      kk EE ˆˆ ≅ .                                     (2) 

In the present approximation, SFA, the square of the local 
field operator is replaced by its mean value [2]:  
                                     222 ˆˆ

kkk EE ϕ=≅ .                             (3) 

The physical meaning of that is that the true quantum-
mechanical spectrum of the local-field operator is replaced by 
a distribution around its mean value. 

The desired long-range equation (generation equation) for 
many-bosonic system is given by [2]: 
                          ( ) ( ) AEkAkAn kk

ˆˆˆˆˆ 10 Δ+= ηη ,             (4) 

where

( ) ( )( ) ( )( ) ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
+

−+
≡

1ˆexp

1

1ˆexp

1
2
1

0

kkkk EE
k

ϕβϕβ
η ,  

( ) ( )( ) ( )( ) ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−

−+
≡

1ˆexp

1

1ˆexp

1
2

1
1

kkkkk EE
k

ϕβϕβϕ
η ,  

Â  is an arbitrary operator commute with the creation and 

annihilation operators, and 
Tk B

1
=β , where Bk  is the 

Boltzmann’s constant and T  is the absolute temperature. 
Now, we are in a position to derive the closed set of 

nonlinear integral equations. We start by setting 1ˆ =A  in  (4): 
           ( ) ( ) kk Ekkn ˆˆ 10 Δ+= ηη .                         (5) 

From the symmetry of the fluctuations in the local-field 
operator: 0ˆ =Δ kE ; this yields to 

                             ( )knk 0ˆ η= .                                         (6) 

It is more convenient to rewrite the long-range equation in 
terms of the fluctuations of occupation number operator:  
                                    kkk nnn ˆˆˆ +=Δ .                              (7)   

Thus 
                                    ( ) AEkAn kk

ˆˆˆˆ 1 Δ=Δ η .                   (8) 

To obtain the pair correlation function, we simply put 

qnA ˆˆ Δ=  in (8), where qk = : 

                    ( )
cqkcqk nEknn ˆˆˆˆ 1 ΔΔ=ΔΔ η                           (9) 

The quadratic fluctuations in the occupation numbers can 
not be calculated from the long-range equation, where kn̂Δ  

does not commute with +
kb̂  and kb̂ . It is given by [2]: 

                        ( ) 222 ˆˆˆ
kkk nnn −=Δ ;                           (10) 

                 ( ) ( ) ( ) kkkkk nEknnn ˆˆ2ˆ1ˆˆ 1
2 ΔΔ++=Δ η    (11) 

Finally, to obtain the fluctuations in the local-field operator, 
22ˆ
kkE ϕ=Δ , we set kEA ˆˆ Δ=  in (8): 

                                 ( ) kkk nEk ˆˆ2
1 ΔΔ=ϕη .                  (12) 

The total Hamiltonian describing neutral many-bosonic 
system in second quantization can be written as [16] 

               ( )∑ ∑ −
+ +=

k
k

k
kkk kVbb

m
kH ρρ ˆˆ

2
1ˆˆ

2
ˆ

22
,            (13) 

where 

      ( ) ( ) ( )∫= rdrkirVkV .exp ;     ∑ +
+Ω

≡
q

qqkk bb ˆˆ1ρ̂ ,     (14) 

Ω  is the normalization volume of the system, and ( )kV  the 
Fourier transform of the pair potential ( )rV .   

In our calculations we are interested in the grand 
Hamiltonian rather than the Hamiltonian; this is defined as 

          ( )∑ ∑ −
+ +⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

k
k

k
kkkg kVbb

m
kH ρρμ ˆˆ

2
1ˆˆ

2
ˆ

22
.     (15) 

Here μ  is the chemical potential which is the energy required 
to add a particle to the system or to remove a particle from the 
system.  

The local-field operator kÊ , is given by [2] and [17] 

               [ ][ ] ( ) ( ) q
q

kgkk nqkWkbHbE ˆ,1ˆ,ˆ,ˆˆ ∑Ω
+== + ε ,      (16) 

where ( ) με −=
m
kk

2

22
, and ( ) ( ) ( )qkVVqkW −+= 0, .            

The variation in the local-field operator 2ˆ
kEΔ  can be 

calculated from (16) to be 

                                 ( ) q
q

k nqkWE ˆ,1ˆ Δ
Ω

=Δ ∑ .                  (17) 

The closed set of nonlinear integral equations (6), (9), (11), 
(12), and (16) can be solved numerically by iteration method 
along with Gaussian quadrature point method. Throughout this 
work, a natural system of units is used such that m== 1 , 
where m is the 4He atomic mass, the conversion factor being 

120048.12
2

=
m

 K.Å2 . 

III. RESULTS AND DISCUSSION 
A previous study [1] approximated the interaction potential 

to a step potential model. In the present work, the potential is 
approximated to a repulsive part represented by a potential 
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step of  strength A  and core radius 1r  and an attractive part 
represented by a potential well of depth B  and range 2r , 

                  ( )
⎪
⎩

⎪
⎨

⎧
<<

<
=

otherwise
rrrB

rrA
rV

0
21

1

                                     (18) 

The role of potential parameters on the condensate fraction 
is examined in this work. 

The effect of the strength of the repulsive potential on the 
condensate fraction is studied and shown in Fig. 1. It is found 
that the condensate fraction decreases as the potential strength 
increases. In the low temperature limit the effect of the 
potential is almost not observed and the system behaves like 
as an ideal Bose gas. The transition from the ground state to 
the excited state occurs smoothly as the potential strength is 
weak. This transition occurs drastically as the potential 
strength has strong values. 

The transition temperature, cT , the temperature where the 
condensate fraction vanishes, decreases as the potential 
strength increases. Table 1 shows the transition temperature as 
determined from Fig. 1 for different values of potential 
strength. 

For ideal 4He gas the transition temperature is 3.14 K. In the 
interacting system the condensate fraction depends on the 
temperature and potential strength. It is very clear from Fig. 1 
that the effect of the potential strength appears preciously in 
the vicinity of the transition temperature. 

Bose-Einstein condensation occurs if the thermal wave 
length (De-Broglie wave length) is greater than the 
interparticle spacing. All of the above results are consistent 
with this condition. As the potential strength increases, the 
interparticle spacing increases and the probability of 
overlapping between the De-Broglie waves of the particle 
system decreases. This means that the condensate fraction 
decreases, as well as the transition temperature. Also, from 
pure quantum mechanics language, the repulsive potential 
may excite the system and the probability of excitation will 
increase as the temperature or potential strength increases. 
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Fig. 1 The condensate fraction as a function of temperature T  at B = 

- 0.01 A , 1r = 1.5 Ǻ, 2r = 3.0 Ǻ, N = 106,  and density number n = 
0.02165 (Å-3), and different values of the potential strength A  

TABLE I 
THE TRANSITION TEMPERATURE cT  AT B = –0.01 A , 1r = 1.5 Ǻ, 2r = 3.0 

Ǻ, TOTAL NUMBER OF PARTICLES IN THE SYSTEM 
610=N , n = 0.02165 

(Å-3), AND DIFFERENT VALUES OF THE POTENTIAL STRENGTH A  

 
To investigate the role of the potential well, we repeat the 

previous calculations at the same values of the repulsive 
potential strength but at a different value of the potential depth 
of the well, B = -0.1 A . The results of the condensate fraction 
as a function of temperature are shown in Fig. 2 as well as the 
transition temperature in Table 2. It is very clear that as the 
attractive potential increases the condensate fraction and 
transition temperature increase. Fig. 2 indicates that the depth 
of the attractive potential plays a crucial role and is dominant 
over the repulsive potential. The transition temperature in this 
case is greater than that for an ideal 4He system. This means 
that the system will remain in the ground state at relatively 
high temperature. As the depth of the attractive potential 
decreases, the interparticle spacing and the probability of 
overlapping between the De-Broglie waves of the particles 
increase.  
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Fig. 2 The condensate fraction as a function of temperature T at B = 

–0.1 A , 1r = 1.5 Ǻ, 2r = 3.0 Ǻ, N = 106, n = 0.02165 (Å-3), and 
different values of the potential strength A  

 
TABLE II 

THE TRANSITION TEMPERATURE cT AT B = –0.1 A , 1r = 1.5Ǻ, 2r = 3.0 Ǻ, 

N = 106, n = 0.02165 (Å-3), AND DIFFERENT VALUES OF POTENTIAL 

STRENGTH A  
A (K) 10.0 20.0 30.0 40.0 50.0 

cT (K) 4.30 4.11 3.91 3.69 3.51 
 

We studied the effect of the repulsive and attractive 
potential strength on the condensate fraction. To complete our 
study, we should explore the role of the core radius of the 
repulsive part of the potential and the range of the attractive 
potential well. 

A  (K) 10.0 20.0 30.0 40.0 50.0 

cT  (K) 2.89 2.70 2.41 2.20 1.89 
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Fig. 3 shows the condensate fraction of the system at 
different values of core radius, 1r , and Table 3 lists the 
corresponding values of the transition temperature. The 
behavior of the results resembles that in Fig. 1. The 
condensate fraction and the transition temperature decrease by 
increasing the strength of the repulsive part of the potential or 
increasing the core radius. By increasing the core radius of the 
repulsive potential the interparticle spacing increases.  

Fig. 4 shows the results of condensate fraction at different 
values of attractive potential range, 2r , and the determined 
values of transition temperatures tabulated in Table 4. The 
condensate fraction and transition temperature increase by 
increasing the range of the attractive potential as expected. In 
a system of a deep potential well or a large range, the 
transition temperature of the system will be increase. 

To make sure that the used value of 610=N satisfies the 
thermodynamic limit, the condensate fraction at different 
values of N  is calculated as shown in Fig. 5. The results are 
close to each other which indicate that we are working almost 
in the thermodynamic limit. 
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Fig. 3 The condensate fraction as a function of temperature T at A = 

10.0K, B = –0.1 A , 2r = 3.0 Ǻ, N = 106, n = 0.02165 (Å-3), and 

different values of the core radius of the repulsive part 1r  
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Fig. 4 The condensate fraction as a function of temperature T at A
=10.0 K, B =–0.1 A , 1r = 1.5 Ǻ, N = 106, n =0.02165 (Å-3), and 

different values of the range of the attractive part 2r  
 

TABLE III 
THE TRANSITION TEMPERATURE cT AT A =10.0 K, B = –0.1 A , 2r = 3.0 

Ǻ, N = 106, n = 0.02165 (Å-3), AND DIFFERENT VALUES OF CORE RADIUS 

OF THE REPULSIVE PART 1r  

1r  (Ǻ) 1.0 1.5 2.0 

cT ( K) 3.71 3.5 2.61 
 

Finally, the effect of the density number of particles on 
condensate fraction is investigated. Fig. 6 shows the results, 
and Table 5 list the corresponding transition temperature. The 
condensate fraction and transition temperature increase as the 
system become more condensed. In this case the interparticle 
spacing decreases and becomes shorter than the thermal 
wavelength. We conclude that in condensed systems the 
required temperature to hold the system in excited state is 
increased. 

 
TABLE IV  

THE TRANSITION TEMPERATURE cT   AT A =10.0 K, B = –0.1 A , 1r = 1.5 

Ǻ, N = 106, n = 0.02165 (Å-3), AND DIFFERENT VALUES OF THE RANGE OF 

THE ATTRACTIVE PART 2r  

2r (Ǻ) 2.00 3.00 4.00 

        cT  (K) 3.01 3.50 4.51 
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Fig. 5 The condensate fraction as a function of temperature T at A

=10.0 K, B = –0.1 A , 1r = 1.5 Ǻ, 2r = 3.0 Ǻ, n = 0.02165 (Å-3), and 
different values of the total number of particles N  
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Fig. 6 The condensate fraction as a function of temperature T at A

=10.0 K, B = –0.1 A ,  1r = 1.5 Ǻ, 2r = 3.0 Ǻ, N = 106, and different 
values of the number density n  

 
TABLE V 

THE TRANSITION TEMPERATURE cT  AT A =10.0 K, B = –0.1 A , 1r = 1.5 

Ǻ, 2r = 3.0 Ǻ, N = 106, AND DIFFERENT VALUES OF NUMBER DENSITY n  

      n (Å-3) 0.005 0.01 0.02165 0.03 

cT  (K) 1.30 2.02 3.50 4.33 

World Academy of Science, Engineering and Technology
International Journal of Physical and Mathematical Sciences

 Vol:6, No:3, 2012 

255International Scholarly and Scientific Research & Innovation 6(3) 2012 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 P
hy

si
ca

l a
nd

 M
at

he
m

at
ic

al
 S

ci
en

ce
s 

V
ol

:6
, N

o:
3,

 2
01

2 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
15

52
.p

df



 

 

IV. CONCLUSION 
It was found that the condensate fraction and the transition 

temperature depend on the strength, the depth, the core radius 
of the repulsive part, and the range of the attractive part. As 
the potential strength or the core radius of the repulsive part 
increases, the condensate fraction and the transition 
temperature decrease. On the other hand, as the potential depth 
or the range of the attractive part increases, the condensation 
fraction and the transition temperature increase. 
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