Search results for: Flow patterns
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2944

Search results for: Flow patterns

2944 Tidal Flow Patterns Near A Coastal Headland

Authors: Fu E. Tang, Daoyi Chen

Abstract:

Experimental investigations were carried out in the Manchester Tidal flow Facility (MTF) to study the flow patterns in the region around and adjacent to a hypothetical headland in tidal (oscillatory) ambient flow. The Planar laser-induced fluorescence (PLIF) technique was used for visualization, with fluorescent dye released at specific points around the headland perimeter and in its adjacent recirculation zone. The flow patterns can be generalized into the acceleration, stable flow and deceleration stages for each halfcycle, with small variations according to location, which are more distinct for low Keulegan-Carpenter number (KC) cases. Flow patterns in the mixing region are unstable and complex, especially in the recirculation zone. The flow patterns are in agreement with previous visualizations, and support previous results in steady ambient flow. It is suggested that the headland lee could be a viable location for siting of pollutant outfalls.

Keywords: Planar laser-induced Fluorescence, recirculation zone, tidal flow, wake flows

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1601
2943 Comparison on Electrode and Ground Arrangements Effect on Heat Transfer under Electric Force in a Channel and a Cavity Flow

Authors: Suwimon Saneewong Na Ayuttaya, Chainarong Chaktranond, Phadungsak Rattanadecho

Abstract:

This study numerically investigates the effects of Electrohydrodynamic on flow patterns and heat transfer enhancement within a cavity which is on the lower wall of channel. In this simulation, effects of using ground wire and ground plate on the flow patterns are compared. Moreover, the positions of electrode wire respecting with ground are tested in the range of angles θ = 0 - 180o. High electrical voltage exposes to air is 20 kV. Bulk mean velocity and temperature of inlet air are controlled at 0.1 m/s and 60 OC, respectively. The result shows when electric field is applied, swirling flow is appeared in the channel. In addition, swirling flow patterns in the main flow of using ground plate are widely spreader than that of using ground wire. Moreover, direction of swirling flow also affects the flow pattern and heat transfer in a cavity. These cause the using ground wire to give the maximum temperature and heat transfer higher than using ground plate. Furthermore, when the angle is at θ = 60o, high shear flow effect is obtained. This results show high strength of swirling flow and effective heat transfer enhancement.

Keywords: Swirling Flow, Heat Transfer, Electrohydrodynamic, Numerical Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2072
2942 Visual Study on Flow Patterns and Heat Transfer during Convective Boiling Inside Horizontal Smooth and Microfin Tubes

Authors: V.D. Hatamipour, M.A. Akhavan-Behabadi

Abstract:

Evaporator is an important and widely used heat exchanger in air conditioning and refrigeration industries. Different methods have been used by investigators to increase the heat transfer rates in evaporators. One of the passive techniques to enhance heat transfer coefficient is the application of microfin tubes. The mechanism of heat transfer augmentation in microfin tubes is dependent on the flow regime of two-phase flow. Therefore many investigations of the flow patterns for in-tube evaporation have been reported in literatures. The gravitational force, surface tension and the vapor-liquid interfacial shear stress are known as three dominant factors controlling the vapor and liquid distribution inside the tube. A review of the existing literature reveals that the previous investigations were concerned with the two-phase flow pattern for flow boiling in horizontal tubes [12], [9]. Therefore, the objective of the present investigation is to obtain information about the two-phase flow patterns for evaporation of R-134a inside horizontal smooth and microfin tubes. Also Investigation of heat transfer during flow boiling of R-134a inside horizontal microfin and smooth tube have been carried out experimentally The heat transfer coefficients for annular flow in the smooth tube is shown to agree well with Gungor and Winterton-s correlation [4]. All the flow patterns occurred in the test can be divided into three dominant regimes, i.e., stratified-wavy flow, wavy-annular flow and annular flow. Experimental data are plotted in two kinds of flow maps, i.e., Weber number for the vapor versus weber number for the liquid flow map and mass flux versus vapor quality flow map. The transition from wavy-annular flow to annular or stratified-wavy flow is identified in the flow maps.

Keywords: Flow boiling, Flow pattern, Heat transfer, Horizontal, Smooth tube, Microfin tube.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2275
2941 Gas-Liquid Two Phase Flow Phenomenon in Near Horizontal Upward and Downward Inclined Pipe Orientations

Authors: Afshin J. Ghajar, Swanand M. Bhagwat

Abstract:

The main purpose of this work is to experimentally investigate the effect of pipe orientation on two phase flow phenomenon. Flow pattern, void fraction and two phase pressure drop is measured in a polycarbonate pipe with an inside diameter of 12.7mm for inclination angles ranging from -20o to +20o using air-water fluid combination. The experimental data covers all flow patterns and the entire range of void fraction typically observed in two phase flow. The effect of pipe orientation on void fraction and two phase pressure drop is justified with reference to the change in flow structure and two phase flow behavior. In addition to this, the top performing void fraction and two phase pressure drop correlations available in the literature are presented and their performance is assessed against the experimental data in the present study and that available in the literature.

Keywords: Flow patterns, inclined two phase flow, pressure drop, void fraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4506
2940 Retrofitting of Bridge Piers against the Scour Damages: Case Study of the Marand-Soofian Route Bridge

Authors: Shatirah Akib, Hossein Basser, Hojat Karami, Afshin Jahangirzadeh

Abstract:

Bridge piers which are constructed in the track of high water rivers cause some variations in the flow patterns. This variation mostly is a result of the changes in river sections. Decreasing the river section, bridge piers significantly impress the flow patterns. Once the flow approaches the piers, the stream lines change their order, causing the appearance of different flow patterns around the bridge piers. New flow patterns are created following the geometry and the other technical characteristics of the piers. One of the most significant consequences of this event is the scour generated around the bridge piers which threatens the safety of the structure. In order to determine the properties of scour holes, to find maximum depth of the scour is an important factor. In this manuscript a numerical simulation of the scour around Marand-Soofian route bridge piers has been carried out via SSIIM 2.0 Software and the amount of maximum scour has been achieved subsequently. Eventually the methods for retrofitting of bridge piers against scours and also the methods for decreasing the amount of scour have been offered.

Keywords: Scour, Bridge pier, numerical simulation, SSIIM 2.0.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2725
2939 A Comparative CFD Study on the Hemodynamics of Flow through an Idealized Symmetric and Asymmetric Stenosed Arteries

Authors: B. Prashantha, S. Anish

Abstract:

The aim of the present study is to computationally evaluate the hemodynamic factors which affect the formation of atherosclerosis and plaque rupture in the human artery. An increase of atherosclerosis disease in the artery causes geometry changes, which results in hemodynamic changes such as flow separation, reattachment, and adhesion of new cells (chemotactic) in the artery. Hence, geometry plays an important role in the determining the nature of hemodynamic patterns. Influence of stenosis in the non-bifurcating artery, under pulsatile flow condition, has been studied on an idealized geometry. Analysis of flow through symmetric and asymmetric stenosis in the artery revealed the significance of oscillating shear index (OSI), flow separation, low WSS zones and secondary flow patterns on plaque formation. The observed characteristic of flow in the post-stenotic region highlight the importance of plaque eccentricity on the formation of secondary stenosis on the arterial wall.

Keywords: Atherosclerotic plaque, Oscillatory Shear Index, Stenosis nature, Wall Shear Stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1493
2938 Numerical Simulations of Shear Driven Square and Triangular Cavity by Using Lattice Boltzmann Scheme

Authors: A. M. Fudhail, N. A. C. Sidik, M. Z. M. Rody, H. M. Zahir, M.T. Musthafah

Abstract:

In this paper, fluid flow patterns of steady incompressible flow inside shear driven cavity are studied. The numerical simulations are conducted by using lattice Boltzmann method (LBM) for different Reynolds numbers. In order to simulate the flow, derivation of macroscopic hydrodynamics equations from the continuous Boltzmann equation need to be performed. Then, the numerical results of shear-driven flow inside square and triangular cavity are compared with results found in literature review. Present study found that flow patterns are affected by the geometry of the cavity and the Reynolds numbers used.

Keywords: Lattice Boltzmann method, shear driven cavity, square cavity, triangular cavity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1915
2937 Numerical Study of Microscale Gas Flow-Separation Using Explicit Finite Volume Method

Authors: A. Chaudhuri, C. Guha, T. K. Dutta

Abstract:

Pressure driven microscale gas flow-separation has been investigated by solving the compressible Navier-Stokes (NS) system of equations. A two dimensional explicit finite volume (FV) compressible flow solver has been developed using modified advection upwind splitting methods (AUSM+) with no-slip/first order Maxwell-s velocity slip conditions to predict the flowseparation behavior in microdimensions. The effects of scale-factor of the flow geometry and gas species on the microscale gas flowseparation have been studied in this work. The intensity of flowseparation gets reduced with the decrease in scale of the flow geometry. In reduced dimension, flow-separation may not at all be present under similar flow conditions compared to the larger flow geometry. The flow-separation patterns greatly depend on the properties of the medium under similar flow conditions.

Keywords: AUSM+, FVM, Flow-separation, Microflow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1564
2936 Experimental Study on Gas-Viscous Liquid Mixture Flow Regimes and Transitions Criteria in Vertical Narrow Rectangular Channels

Authors: F. J. Sowiński, M. Dziubiński

Abstract:

In the study the influence of the physical-chemical properties of a liquid, the width of a channel gap and the superficial liquid and gas velocities on the patterns formed during two phase flows in vertical, narrow mini-channels was investigated. The research was performed in the channels of rectangular cross-section and of dimensions: 15 x 0.65 mm and 7.5 x 0.73 mm. The experimental data were compared with the published criteria of the transitions between the patterns of two-phase flows.

Keywords: Two-phase flow, flow regimes, mini-channel, viscosity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1397
2935 Numerical Investigation of Flow Patterns and Thermal Comfort in Air-Conditioned Lecture Rooms

Authors: Taher M. Abou-deif, Mahmoud A. Fouad, Essam E. Khalil

Abstract:

The present paper was concerned primarily with the analysis, simulation of the air flow and thermal patterns in a lecture room. The paper is devoted to numerically investigate the influence of location and number of ventilation and air conditioning supply and extracts openings on air flow properties in a lecture room. The work focuses on air flow patterns, thermal behaviour in lecture room where large number of students. The effectiveness of an air flow system is commonly assessed by the successful removal of sensible and latent loads from occupants with additional of attaining air pollutant at a prescribed level to attain the human thermal comfort conditions and to improve the indoor air quality; this is the main target during the present paper. The study is carried out using computational fluid dynamics (CFD) simulation techniques as embedded in the commercially available CFD code (FLUENT 6.2). The CFD modelling techniques solved the continuity, momentum and energy conservation equations in addition to standard k – ε model equations for turbulence closure. Throughout the investigations, numerical validation is carried out by way of comparisons of numerical and experimental results. Good agreement is found among both predictions.

Keywords: Air Conditioning, CFD, Lecture Rooms, Thermal Comfort

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2191
2934 Visualized Flow Patterns around and inside a Two-Sided Wind-Catcher in the Presence of Upstream Structures

Authors: M. Afshin, A. Sohankar, M. Dehghan Manshadi, M. R. Daneshgar, G. R. Dehghan Kamaragi

Abstract:

In this paper, the influence of upstream structures on the flow patternaround and inside the wind-catcher is experimentally investigated by smoke flow visualization techniques. Wind-catchers are an important part of natural ventilation in residential buildings or public places such as shopping centers, libraries, etc. Wind-catchers might be also used in places of high urban densities; hence their potential to provide natural ventilation is dependent on the presence of upstream structures. In this study, the two-sided wind-catcher model was based on a real wind-catcher observed in the city of Yazd, Iran. The present study focuses on the flow patterns around and inside the isolated two-sided wind-catcher, and on a two-sided wind-catcher in the presence of an upstream structure. The results show that the presence of an upstream structure influences the airflow pattern force and direction. Placing a high upstream structure reverses the airflow direction inside the wind-catcher.

Keywords: Natural Ventilation, Smoke Flow Visualization, Two-Sided Wind-Catcher.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1945
2933 Transient Solution of an Incompressible Viscous Flow in a Channel with Sudden Expansion/Contraction

Authors: Durga C. Dalal, Swapan K. Pandit

Abstract:

In this paper, a numerical study has been made to analyze the transient 2-D flows of a viscous incompressible fluid through channels with forward or backward constriction. Problems addressed include flow through sudden contraction and sudden expansion channel geometries with rounded and increasingly sharp reentrant corner. In both the cases, numerical results are presented for the separation and reattachment points, streamlines, vorticity and flow patterns. A fourth order accurate compact scheme has been employed to efficiently capture steady state solutions of the governing equations. It appears from our study that sharpness of the throat in the channel is one of the important parameters to control the strength and size of the separation zone without modifying the general flow patterns. The comparison between the two cases shows that the upstream geometry plays a significant role on vortex growth dynamics.

Keywords: Forward and backward constriction, HOC scheme, Incompressible viscous flows, Separation and reattachment points.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1646
2932 CFD Analysis of Two Phase Flow in a Horizontal Pipe – Prediction of Pressure Drop

Authors: P. Bhramara, V. D. Rao, K. V. Sharma , T. K. K. Reddy

Abstract:

In designing of condensers, the prediction of pressure drop is as important as the prediction of heat transfer coefficient. Modeling of two phase flow, particularly liquid – vapor flow under diabatic conditions inside a horizontal tube using CFD analysis is difficult with the available two phase models in FLUENT due to continuously changing flow patterns. In the present analysis, CFD analysis of two phase flow of refrigerants inside a horizontal tube of inner diameter, 0.0085 m and 1.2 m length is carried out using homogeneous model under adiabatic conditions. The refrigerants considered are R22, R134a and R407C. The analysis is performed at different saturation temperatures and at different flow rates to evaluate the local frictional pressure drop. Using Homogeneous model, average properties are obtained for each of the refrigerants that is considered as single phase pseudo fluid. The so obtained pressure drop data is compared with the separated flow models available in literature.

Keywords: Adiabatic conditions, CFD analysis, Homogeneousmodel and Liquid – Vapor flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3651
2931 Discovery of Sequential Patterns Based On Constraint Patterns

Authors: Shigeaki Sakurai, Youichi Kitahata, Ryohei Orihara

Abstract:

This paper proposes a method that discovers sequential patterns corresponding to user-s interests from sequential data. This method expresses the interests as constraint patterns. The constraint patterns can define relationships among attributes of the items composing the data. The method recursively decomposes the constraint patterns into constraint subpatterns. The method evaluates the constraint subpatterns in order to efficiently discover sequential patterns satisfying the constraint patterns. Also, this paper applies the method to the sequential data composed of stock price indexes and verifies its effectiveness through comparing it with a method without using the constraint patterns.

Keywords: Sequential pattern mining, Constraint pattern, Attribute constraint, Stock price indexes

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1383
2930 Flow Characteristics of Pulp Liquid in Straight Ducts

Authors: M. Sumida

Abstract:

An experimental investigation was performed on pulp liquid flow in straight ducts with a square cross section. Fully developed steady flow was visualized and the fiber concentration was obtained using a light-section method developed by the author et al. The obtained results reveal quantitatively, in a definite form, the distribution of the fiber concentration. From the results and measurements of pressure loss, it is found that the flow characteristics of pulp liquid in ducts can be classified into five patterns. The relationships among the distributions of mean and fluctuation of fiber concentration, the pressure loss and the flow velocity are discussed, and then the features for each pattern are extracted. The degree of nonuniformity of the fiber concentration, which is indicated by the standard deviation of its distribution, is decreased from 0.3 to 0.05 with an increase in the velocity of the tested pulp liquid from 0.4 to 0.8%.

Keywords: Fiber Concentration, Flow Characteristic, Pulp Liquid, Straight Duct.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1532
2929 Effect of Secondary Curvature on Mixing Characteristic within Constant Circular Tubes

Authors: Minh Tuan Nguyen, Sang-Wook Lee

Abstract:

In this study, numerical simulations on laminar flow in sinusoidal wavy shaped tubes were conducted for mean Reynolds number of 250, which is in the range of physiological flow-rate and investigated flow structures, pressure distribution and particle trajectories both in steady and periodic inflow conditions. For extensive comparisons, various wave lengths and amplitudes of sine function for geometry of tube models were employed. The results showed that small amplitude secondary curvature has significant influence on the nature of flow patterns and particle mixing mechanism. This implies that characterizing accurate geometry is essential in accurate predicting of in vivo hemodynamics and may motivate further study on any possibility of reflection of secondary flow on vascular remodeling and pathophysiology.

Keywords: Secondary curvature, Sinusoidal wavy tubes, Mixing Characteristics, Pulsatile flow, Hemodynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1562
2928 CFD Simulation and Validation of Flow Pattern Transition Boundaries during Moderately Viscous Oil-Water Two-Phase Flow through Horizontal Pipeline

Authors: Anand B. Desamala, Anjali Dasari, Vinayak Vijayan, Bharath K. Goshika, Ashok K. Dasmahapatra, Tapas K. Mandal

Abstract:

In the present study, computational fluid dynamics (CFD) simulation has been executed to investigate the transition boundaries of different flow patterns for moderately viscous oil-water (viscosity ratio 107, density ratio 0.89 and interfacial tension of 0.032 N/m.) two-phase flow through a horizontal pipeline with internal diameter and length of 0.025 m and 7.16 m respectively. Volume of Fluid (VOF) approach including effect of surface tension has been employed to predict the flow pattern. Geometry and meshing of the present problem has been drawn using GAMBIT and ANSYS FLUENT has been used for simulation. A total of 47037 quadrilateral elements are chosen for the geometry of horizontal pipeline. The computation has been performed by assuming unsteady flow, immiscible liquid pair, constant liquid properties, co-axial flow and a T-junction as entry section. The simulation correctly predicts the transition boundaries of wavy stratified to stratified mixed flow. Other transition boundaries are yet to be simulated. Simulated data has been validated with our own experimental results.

Keywords: CFD simulation, flow pattern transition, moderately viscous oil-water flow, prediction of flow transition boundary, VOF technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4193
2927 Unsteady Flow between Two Concentric Rotating Spheres along with Uniform Transpiration

Authors: O. Mahian, A. B. Rahimi, A. Kianifar, A. Jabari Moghadam

Abstract:

In this study, the numerical solution of unsteady flow between two concentric rotating spheres with suction and blowing at their boundaries is presented. The spheres are rotating about a common axis of rotation while their angular velocities are constant. The Navier-Stokes equations are solved by employing the finite difference method and implicit scheme. The resulting flow patterns are presented for various values of the flow parameters including rotational Reynolds number Re , and a blowing/suction Reynolds number Rew . Viscous torques at the inner and the outer spheres are calculated, too. It is seen that increasing the amount of suction and blowing decrease the size of eddies generated in the annulus.

Keywords: Concentric spheres, numerical study, suction andblowing, unsteady flow, viscous torque.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1714
2926 A Study on using N-Pattern Chains of Design Patterns based on Software Quality Metrics

Authors: Niloofar Khedri, Masoud Rahgozar, MahmoudReza Hashemi

Abstract:

Design patterns describe good solutions to common and reoccurring problems in program design. Applying design patterns in software design and implementation have significant effects on software quality metrics such as flexibility, usability, reusability, scalability and robustness. There is no standard rule for using design patterns. There are some situations that a pattern is applied for a specific problem and this pattern uses another pattern. In this paper, we study the effect of using chain of patterns on software quality metrics.

Keywords: Design Patterns, Design patterns' Relationship, Software quality Metrics, Software Engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1538
2925 Concurrency in Web Access Patterns Mining

Authors: Jing Lu, Malcolm Keech, Weiru Chen

Abstract:

Web usage mining is an interesting application of data mining which provides insight into customer behaviour on the Internet. An important technique to discover user access and navigation trails is based on sequential patterns mining. One of the key challenges for web access patterns mining is tackling the problem of mining richly structured patterns. This paper proposes a novel model called Web Access Patterns Graph (WAP-Graph) to represent all of the access patterns from web mining graphically. WAP-Graph also motivates the search for new structural relation patterns, i.e. Concurrent Access Patterns (CAP), to identify and predict more complex web page requests. Corresponding CAP mining and modelling methods are proposed and shown to be effective in the search for and representation of concurrency between access patterns on the web. From experiments conducted on large-scale synthetic sequence data as well as real web access data, it is demonstrated that CAP mining provides a powerful method for structural knowledge discovery, which can be visualised through the CAP-Graph model.

Keywords: concurrent access patterns (CAP), CAP mining and modelling, CAP-Graph, web access patterns (WAP), WAP-Graph, Web usage mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1679
2924 Sri Lanka – Middle East Labour Migration Corridor: Trends, Patterns and Structural Changes

Authors: Dinesha Siriwardhane, Indralal De Silva, Sampath Amaratunge

Abstract:

Objective of this study is to explore the recent trends, patterns and the structural changes in the labour migration from Sri Lanka to Middle East countries and to discuss the possible impacts of those changes on the remittance flow. Study uses secondary data published by Sri Lanka Bureau of Foreign Employment and Central Bank. Thematic analysis of the secondary data revealed that the migration for labour has increased rapidly during past decades. Parallel with that the gender and the skill composition of the migration flow has been changing. Similarly, the destinations for male migration have changed over the period. These show positive implications on the international remittance receipts to the country.

Keywords: Labour migration, Remittances, Middle East, Sri Lanka.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2765
2923 Simulation of 3D Flow using Numerical Model at Open-channel Confluences

Authors: R.Goudarzizadeh, S.H.Mousavi Jahromi, N.Hedayat

Abstract:

This paper analytically investigates the 3D flow pattern at the confluences of two rectangular channels having 900 angles using Navier-Stokes equations based on Reynolds Stress Turbulence Model (RSM). The equations are solved by the Finite- Volume Method (FVM) and the flow is analyzed in terms of steadystate (single-phased) conditions. The Shumate experimental findings were used to test the validity of data. Comparison of the simulation model with the experimental ones indicated a close proximity between the flow patterns of the two sets. Effects of the discharge ratio on separation zone dimensions created in the main-channel downstream of the confluence indicated an inverse relation, where a decrease in discharge ratio, will entail an increase in the length and width of the separation zone. The study also found the model as a powerful analytical tool in the feasibility study of hydraulic engineering projects.

Keywords: 900 confluence angle, flow separation zone, numerical modeling, turbulent flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1809
2922 The Relations between the Fractal Properties of the River Networks and the River Flow Time Series

Authors: M. H. Fattahi, H. Jahangiri

Abstract:

All the geophysical phenomena including river networks and flow time series are fractal events inherently and fractal patterns can be investigated through their behaviors. A non-linear system like a river basin can well be analyzed by a non-linear measure such as the fractal analysis. A bilateral study is held on the fractal properties of the river network and the river flow time series. A moving window technique is utilized to scan the fractal properties of them. Results depict both events follow the same strategy regarding to the fractal properties. Both the river network and the time series fractal dimension tend to saturate in a distinct value.

Keywords: river flow time series, fractal, river networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1644
2921 A Novel NIRS Index to Evaluate Brain Activity in Prefrontal Regions While Listening to First and Second Languages for Long Time Periods

Authors: Kensho Takahashi, Ko Watanabe, Takashi Kaburagi, Hiroshi Tanaka, Kajiro Watanabe, Yosuke Kurihara

Abstract:

Near-infrared spectroscopy (NIRS) has been widely used as a non-invasive method to measure brain activity, but it is corrupted by baseline drift noise. Here we present a method to measure regional cerebral blood flow as a derivative of NIRS output. We investigate whether, when listening to languages, blood flow can reasonably localize and represent regional brain activity or not. The prefrontal blood flow distribution pattern when advanced second-language listeners listened to a second language (L2) was most similar to that when listening to their first language (L1) among the patterns of mean and standard deviation. In experiments with 25 healthy subjects, the maximum blood flow was localized to the left BA46 of advanced listeners. The blood flow presented is robust to baseline drift and stably localizes regional brain activity.

Keywords: NIRS, oxy-hemoglobin, baseline drift, blood flow, working memory, BA46, first language, second language.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2232
2920 Impact of Fluid Flow Patterns on Metastable Zone Width of Borax in Dual Radial Impeller Crystallizer at Different Impeller Spacings

Authors: A. Čelan, M. Ćosić, D. Rušić, N. Kuzmanić

Abstract:

Conducting crystallization in an agitated vessel requires a proper selection of mixing parameters that would result in a production of crystals of specific properties. In dual impeller systems, which are characterized by a more complex hydrodynamics due to the possible fluid flow interactions, revealing a clear link between mixing parameters and crystallization kinetics is still an open issue. The aim of this work is to establish this connection by investigating how fluid flow patterns, generated by two impellers mounted on the same shaft, reflect on metastable zone width of borax decahydrate, one of the most important parameters of the crystallization process. Investigation was carried out in a 15-dm3 bench scale batch cooling crystallizer with an aspect ratio (H/T) equal to 1.3. For this reason, two radial straight blade turbines (4-SBT) were used for agitation. Experiments were conducted at different impeller spacings at the state of complete suspension. During the process of an unseeded batch cooling crystallization, solution temperature and supersaturation were continuously monitored what enabled a determination of the metastable zone width. Hydrodynamic conditions in the vessel achieved at different impeller spacings investigated were analyzed in detail. This was done firstly by measuring the mixing time required to attain the desired level of homogeneity. Secondly, fluid flow patterns generated in a described dual impeller system were both photographed and simulated by VisiMix Turbulent software. Also, a comparison of these two visualization methods was performed. Experimentally obtained results showed that metastable zone width is definitely affected by the hydrodynamics in the crystallizer. This means that this crystallization parameter can be controlled not only by adjusting the saturation temperature or cooling rate, as is usually done, but also by choosing a suitable impeller spacing that will result in a formation of crystals of wanted size distribution.

Keywords: Dual impeller crystallizer, fluid flow pattern, metastable zone width, mixing time, radial impeller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 830
2919 Inverse Sets-based Recognition of Video Clips

Authors: Alexei M. Mikhailov

Abstract:

The paper discusses the mathematics of pattern indexing and its applications to recognition of visual patterns that are found in video clips. It is shown that (a) pattern indexes can be represented by collections of inverted patterns, (b) solutions to pattern classification problems can be found as intersections and histograms of inverted patterns and, thus, matching of original patterns avoided.

Keywords: Artificial neural cortex, computational biology, data mining, pattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2072
2918 Shear-Layer Instabilities of a Pulsed Stack-Issued Transverse Jet

Authors: Ching M. Hsu, Rong F. Huang, Michael E. Loretero

Abstract:

Shear-layer instabilities of a pulsed stack-issued transverse jet were studied experimentally in a wind tunnel. Jet pulsations were induced by means of acoustic excitation. Streak pictures of the smoke-flow patterns illuminated by the laser-light sheet in the median plane were recorded with a high-speed digital camera. Instantaneous velocities of the shear-layer instabilities in the flow were digitized by a hot-wire anemometer. By analyzing the streak pictures of the smoke-flow visualization, three characteristic flow modes, synchronized flapping jet, transition, and synchronized shear-layer vortices, are identified in the shear layer of the pulsed stack-issued transverse jet at various excitation Strouhal numbers. The shear-layer instabilities of the pulsed stack-issued transverse jet are synchronized by acoustic excitation except for transition mode. In transition flow mode, the shear-layer vortices would exhibit a frequency that would be twice as great as the acoustic excitation frequency.

Keywords: Acoustic excitation, jet in crossflow, shear-layer instability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1661
2917 Heat Transfer Characteristics on Blade Tip with Unsteady Wake

Authors: Minho Bang, Seok Min Choi, Jun Su Park, Hokyu Moon, Hyung Hee Cho

Abstract:

Present study investigates the effect of unsteady wakes on heat transfer in blade tip. Heat/mass transfer was measured in blade tip region depending on a variety of strouhal number by naphthalene sublimation technique. Naphthalene sublimation technique measures heat transfer using a heat/mass transfer analogy. Experiments are performed in linear cascade which is composed of five turbine blades and rotating rods. Strouhal number of inlet flow are changed ranging from 0 to 0.22. Reynolds number is 100,000 based on 11.4 m/s of outlet flow and axial chord length. Three different squealer tip geometries such as base squealer tip, vertical rib squealer tip, and camber line squealer tip are used to study how unsteady wakes affect heat transfer on a blade tip. Depending on squealer tip geometry, different flow patterns occur on a blade tip. Also, unsteady wakes cause reduced tip leakage flow and turbulent flow. As a result, as strouhal number increases, heat/mass transfer coefficients decrease due to the reduced leakage flow. As strouhal number increases, heat/ mass transfer coefficients on a blade tip increase in vertical rib squealer tip.

Keywords: Gas turbine, blade tip, heat transfer, unsteady wakes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1624
2916 Heat Transfer and Frictional Characteristics in Rectangular Channel with Inclined Perforated Baffles

Authors: Se Kyung Oh, Ary Bachtiar Krishna Putra, Soo Whan Ahn

Abstract:

A numerical study on the turbulent flow and heat transfer characteristics in the rectangular channel with different types of baffles is carried out. The inclined baffles have the width of 19.8 cm, the square diamond type hole having one side length of 2.55 cm, and the inclination angle of 5o. Reynolds number is varied between 23,000 and 57,000. The SST turbulence model is applied in the calculation. The validity of the numerical results is examined by the experimental data. The numerical results of the flow field depict that the flow patterns around the different baffle type are entirely different and these significantly affect the local heat transfer characteristics. The heat transfer and friction factor characteristics are significantly affected by the perforation density of the baffle plate. It is found that the heat transfer enhancement of baffle type II (3 hole baffle) has the best values.

Keywords: Turbulent flow, rectangular channel, inclined baffle, heat transfer, friction factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2293
2915 Measurement of Reverse Flow Generated at Cold Exit of Vortex Tube

Authors: Mohd Hazwan bin Yusof, Hiroshi Katanoda

Abstract:

In order to clarify the structure of the cold flow discharged from the vortex tube (VT), the pressure of the cold flow was measured, and a simple flow visualization technique using a 0.75mm-diameter needle and an oily paint is made to study the reverse flow at the cold exit. It is clear that a negative pressure and positive pressure region exist at a certain pressure and cold fraction area, and that a reverse flow is observed in the negative pressure region.

Keywords: Flow visualization, Pressure measurement, Reverse flow, Vortex tube.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1880