Search results for: symmetric matrix.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1145

Search results for: symmetric matrix.

1145 The Partial Non-combinatorially Symmetric N10 -Matrix Completion Problem

Authors: Gu-Fang Mou, Ting-Zhu Huang

Abstract:

An n×n matrix is called an N1 0 -matrix if all principal minors are non-positive and each entry is non-positive. In this paper, we study the partial non-combinatorially symmetric N1 0 -matrix completion problems if the graph of its specified entries is a transitive tournament or a double cycle. In general, these digraphs do not have N1 0 -completion. Therefore, we have given sufficient conditions that guarantee the existence of the N1 0 -completion for these digraphs.

Keywords: Matrix completion, matrix completion, N10 -matrix, non-combinatorially symmetric, cycle, digraph.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1086
1144 Conjugate Gradient Algorithm for the Symmetric Arrowhead Solution of Matrix Equation AXB=C

Authors: Minghui Wang, Luping Xu, Juntao Zhang

Abstract:

Based on the conjugate gradient (CG) algorithm, the constrained matrix equation AXB=C and the associate optimal approximation problem are considered for the symmetric arrowhead matrix solutions in the premise of consistency. The convergence results of the method are presented. At last, a numerical example is given to illustrate the efficiency of this method.

Keywords: Iterative method, symmetric arrowhead matrix, conjugate gradient algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1409
1143 An Iterative Method for the Symmetric Arrowhead Solution of Matrix Equation

Authors: Minghui Wang, Luping Xu, Juntao Zhang

Abstract:

In this paper, according to the classical algorithm LSQR for solving the least-squares problem, an iterative method is proposed for least-squares solution of constrained matrix equation. By using the Kronecker product, the matrix-form LSQR is presented to obtain the like-minimum norm and minimum norm solutions in a constrained matrix set for the symmetric arrowhead matrices. Finally, numerical examples are also given to investigate the performance.

Keywords: Symmetric arrowhead matrix, iterative method, like-minimum norm, minimum norm, Algorithm LSQR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1409
1142 A Contractor for the Symmetric Solution Set

Authors: Milan Hladik

Abstract:

The symmetric solution set Σ sym is the set of all solutions to the linear systems Ax = b, where A is symmetric and lies between some given bounds A and A, and b lies between b and b. We present a contractor for Σ sym, which is an iterative method that starts with some initial enclosure of Σ sym (by means of a cartesian product of intervals) and sequentially makes the enclosure tighter. Our contractor is based on polyhedral approximation and solving a series of linear programs. Even though it does not converge to the optimal bounds in general, it may significantly reduce the overestimation. The efficiency is discussed by a number of numerical experiments.

Keywords: Linear interval systems, solution set, interval matrix, symmetric matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1285
1141 The Inverse Eigenvalue Problem via Orthogonal Matrices

Authors: A. M. Nazari, B. Sepehrian, M. Jabari

Abstract:

In this paper we study the inverse eigenvalue problem for symmetric special matrices and introduce sufficient conditions for obtaining nonnegative matrices. We get the HROU algorithm from [1] and introduce some extension of this algorithm. If we have some eigenvectors and associated eigenvalues of a matrix, then by this extension we can find the symmetric matrix that its eigenvalue and eigenvectors are given. At last we study the special cases and get some remarkable results.

Keywords: Householder matrix, nonnegative matrix, Inverse eigenvalue problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1583
1140 Bisymmetric, Persymmetric Matrices and Its Applications in Eigen-decomposition of Adjacency and Laplacian Matrices

Authors: Mahdi Nouri

Abstract:

In this paper we introduce an efficient solution method for the Eigen-decomposition of bisymmetric and per symmetric matrices of symmetric structures. Here we decompose adjacency and Laplacian matrices of symmetric structures to submatrices with low dimension for fast and easy calculation of eigenvalues and eigenvectors. Examples are included to show the efficiency of the method.

Keywords: Graphs theory, Eigensolution, adjacency and Laplacian matrix, Canonical forms, bisymmetric, per symmetric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2443
1139 Bounds on the Second Stage Spectral Radius of Graphs

Authors: S.K.Ayyaswamy, S.Balachandran, K.Kannan

Abstract:

Let G be a graph of order n. The second stage adjacency matrix of G is the symmetric n × n matrix for which the ijth entry is 1 if the vertices vi and vj are of distance two; otherwise 0. The sum of the absolute values of this second stage adjacency matrix is called the second stage energy of G. In this paper we investigate a few properties and determine some upper bounds for the largest eigenvalue.

Keywords: Second stage spectral radius, Irreducible matrix, Derived graph

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1302
1138 An Iterative Method for the Least-squares Symmetric Solution of AXB+CYD=F and its Application

Authors: Minghui Wang

Abstract:

Based on the classical algorithm LSQR for solving (unconstrained) LS problem, an iterative method is proposed for the least-squares like-minimum-norm symmetric solution of AXB+CYD=E. As the application of this algorithm, an iterative method for the least-squares like-minimum-norm biymmetric solution of AXB=E is also obtained. Numerical results are reported that show the efficiency of the proposed methods.

Keywords: Matrix equation, bisymmetric matrix, least squares problem, like-minimum norm, iterative algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1489
1137 On the Algorithmic Iterative Solutions of Conjugate Gradient, Gauss-Seidel and Jacobi Methods for Solving Systems of Linear Equations

Authors: H. D. Ibrahim, H. C. Chinwenyi, H. N. Ude

Abstract:

In this paper, efforts were made to examine and compare the algorithmic iterative solutions of conjugate gradient method as against other methods such as Gauss-Seidel and Jacobi approaches for solving systems of linear equations of the form Ax = b, where A is a real n x n symmetric and positive definite matrix. We performed algorithmic iterative steps and obtained analytical solutions of a typical 3 x 3 symmetric and positive definite matrix using the three methods described in this paper (Gauss-Seidel, Jacobi and Conjugate Gradient methods) respectively. From the results obtained, we discovered that the Conjugate Gradient method converges faster to exact solutions in fewer iterative steps than the two other methods which took much iteration, much time and kept tending to the exact solutions.

Keywords: conjugate gradient, linear equations, symmetric and positive definite matrix, Gauss-Seidel, Jacobi, algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 473
1136 The Direct Updating of Damping and Gyroscopic Matrices using Incomplete Complex Test Data

Authors: Jiashang Jiang, Yongxin Yuan

Abstract:

In this paper we develop an efficient numerical method for the finite-element model updating of damped gyroscopic systems based on incomplete complex modal measured data. It is assumed that the analytical mass and stiffness matrices are correct and only the damping and gyroscopic matrices need to be updated. By solving a constrained optimization problem, the optimal corrected symmetric damping matrix and skew-symmetric gyroscopic matrix complied with the required eigenvalue equation are found under a weighted Frobenius norm sense.

Keywords: Model updating, damped gyroscopic system, partially prescribed spectral information.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1787
1135 A Fast Neural Algorithm for Serial Code Detection in a Stream of Sequential Data

Authors: Hazem M. El-Bakry, Qiangfu Zhao

Abstract:

In recent years, fast neural networks for object/face detection have been introduced based on cross correlation in the frequency domain between the input matrix and the hidden weights of neural networks. In our previous papers [3,4], fast neural networks for certain code detection was introduced. It was proved in [10] that for fast neural networks to give the same correct results as conventional neural networks, both the weights of neural networks and the input matrix must be symmetric. This condition made those fast neural networks slower than conventional neural networks. Another symmetric form for the input matrix was introduced in [1-9] to speed up the operation of these fast neural networks. Here, corrections for the cross correlation equations (given in [13,15,16]) to compensate for the symmetry condition are presented. After these corrections, it is proved mathematically that the number of computation steps required for fast neural networks is less than that needed by classical neural networks. Furthermore, there is no need for converting the input data into symmetric form. Moreover, such new idea is applied to increase the speed of neural networks in case of processing complex values. Simulation results after these corrections using MATLAB confirm the theoretical computations.

Keywords: Fast Code/Data Detection, Neural Networks, Cross Correlation, real/complex values.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1626
1134 New DES based on Elliptic Curves

Authors: Ghada Abdelmouez M., Fathy S. Helail, Abdellatif A. Elkouny

Abstract:

It is known that symmetric encryption algorithms are fast and easy to implement in hardware. Also elliptic curves have proved to be a good choice for building encryption system. Although most of the symmetric systems have been broken, we can create a hybrid system that has the same properties of the symmetric encryption systems and in the same time, it has the strength of elliptic curves in encryption. As DES algorithm is considered the core of all successive symmetric encryption systems, we modified DES using elliptic curves and built a new DES algorithm that is hard to be broken and will be the core for all other symmetric systems.

Keywords: DES, Elliptic Curves, hybrid system, symmetricencryption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1737
1133 A New Proof on the Growth Factor in Gaussian Elimination for Generalized Higham Matrices

Authors: Qian-Ping Guo, Hou-Biao Li

Abstract:

The generalized Higham matrix is a complex symmetric matrix A = B + iC, where both B ∈ Cn×n and C ∈ Cn×n are Hermitian positive definite, and i = √−1 is the imaginary unit. The growth factor in Gaussian elimination is less than 3√2 for this kind of matrices. In this paper, we give a new brief proof on this result by different techniques, which can be understood very easily, and obtain some new findings.

Keywords: CSPD matrix, positive definite, Schur complement, Higham matrix, Gaussian elimination, Growth factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1746
1132 Generalized Inverse Eigenvalue Problems for Symmetric Arrow-head Matrices

Authors: Yongxin Yuan

Abstract:

In this paper, we first give the representation of the general solution of the following inverse eigenvalue problem (IEP): Given X ∈ Rn×p and a diagonal matrix Λ ∈ Rp×p, find nontrivial real-valued symmetric arrow-head matrices A and B such that AXΛ = BX. We then consider an optimal approximation problem: Given real-valued symmetric arrow-head matrices A, ˜ B˜ ∈ Rn×n, find (A, ˆ Bˆ) ∈ SE such that Aˆ − A˜2 + Bˆ − B˜2 = min(A,B)∈SE (A−A˜2 +B −B˜2), where SE is the solution set of IEP. We show that the optimal approximation solution (A, ˆ Bˆ) is unique and derive an explicit formula for it.

Keywords: Partially prescribed spectral information, symmetric arrow-head matrix, inverse problem, optimal approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1797
1131 Algebraic Riccati Matrix Equation for Eigen- Decomposition of Special Structured Matrices; Applications in Structural Mechanics

Authors: Mahdi Nouri

Abstract:

In this paper Algebraic Riccati matrix equation is used for Eigen-decomposition of special structured matrices. This is achieved by similarity transformation and then using algebraic riccati matrix equation to triangulation of matrices. The process is decomposition of matrices into small and specially structured submatrices with low dimensions for fast and easy finding of Eigenpairs. Numerical and structural examples included showing the efficiency of present method.

Keywords: Riccati, matrix equation, eigenvalue problem, symmetric, bisymmetric, persymmetric, decomposition, canonical forms, Graphs theory, adjacency and Laplacian matrices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1806
1130 On Generalized New Class of Matrix Polynomial Set

Authors: Ghazi S. Kahmmash

Abstract:

New generalization of the new class matrix polynomial set have been obtained. An explicit representation and an expansion of the matrix exponential in a series of these matrix are given for these matrix polynomials.

Keywords: Generating functions, Recurrences relation and Generalization of the new class matrix polynomial set.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1253
1129 An Iterative Updating Method for Damped Gyroscopic Systems

Authors: Yongxin Yuan

Abstract:

The problem of updating damped gyroscopic systems using measured modal data can be mathematically formulated as following two problems. Problem I: Given Ma ∈ Rn×n, Λ = diag{λ1, ··· , λp} ∈ Cp×p, X = [x1, ··· , xp] ∈ Cn×p, where p<n and both Λ and X are closed under complex conjugation in the sense that λ2j = λ¯2j−1 ∈ C, x2j = ¯x2j−1 ∈ Cn for j = 1, ··· , l, and λk ∈ R, xk ∈ Rn for k = 2l + 1, ··· , p, find real-valued symmetric matrices D,K and a real-valued skew-symmetric matrix G (that is, GT = −G) such that MaXΛ2 + (D + G)XΛ + KX = 0. Problem II: Given real-valued symmetric matrices Da, Ka ∈ Rn×n and a real-valued skew-symmetric matrix Ga, find (D, ˆ G, ˆ Kˆ ) ∈ SE such that Dˆ −Da2+Gˆ−Ga2+Kˆ −Ka2 = min(D,G,K)∈SE (D− Da2 + G − Ga2 + K − Ka2), where SE is the solution set of Problem I and · is the Frobenius norm. This paper presents an iterative algorithm to solve Problem I and Problem II. By using the proposed iterative method, a solution of Problem I can be obtained within finite iteration steps in the absence of roundoff errors, and the minimum Frobenius norm solution of Problem I can be obtained by choosing a special kind of initial matrices. Moreover, the optimal approximation solution (D, ˆ G, ˆ Kˆ ) of Problem II can be obtained by finding the minimum Frobenius norm solution of a changed Problem I. A numerical example shows that the introduced iterative algorithm is quite efficient.

Keywords: Model updating, iterative algorithm, gyroscopic system, partially prescribed spectral data, optimal approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1441
1128 Principle Components Updates via Matrix Perturbations

Authors: Aiman Elragig, Hanan Dreiwi, Dung Ly, Idriss Elmabrook

Abstract:

This paper highlights a new approach to look at online principle components analysis (OPCA). Given a data matrix X R,^m x n we characterise the online updates of its covariance as a matrix perturbation problem. Up to the principle components, it turns out that online updates of the batch PCA can be captured by symmetric matrix perturbation of the batch covariance matrix. We have shown that as n→ n0 >> 1, the batch covariance and its update become almost similar. Finally, utilize our new setup of online updates to find a bound on the angle distance of the principle components of X and its update.

Keywords: Online data updates, covariance matrix, online principle component analysis (OPCA), matrix perturbation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1038
1127 A Novel System of Two Coupled Equations for the Longitudinal Components of the Electromagnetic Field in a Waveguide

Authors: Arti Vaish, Harish Parthasarathy

Abstract:

In this paper, a novel wave equation for electromagnetic waves in a medium having anisotropic permittivity has been derived with the help of Maxwell-s curl equations. The x and y components of the Maxwell-s equations are written with the permittivity () being a 3 × 3 symmetric matrix. These equations are solved for Ex , Ey, Hx, Hy in terms of Ez, Hz, and the partial derivatives. The Z components of the Maxwell-s curl are then used to arrive to the generalized Helmholtz equations for Ez and Hz.

Keywords: Electromagnetism, Maxwell's Equations, Anisotropic permittivity, Wave equation, Matrix Equation, Permittivity tensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1702
1126 Material Failure Process Simulation by Improve Finite Elements with Embedded Discontinuities

Authors: Juárez-Luna Gelacio, Ayala Gustavo, Retama-Velasco Jaime

Abstract:

This paper shows the advantages of the material failure process simulation by improve finite elements with embedded discontinuities, using a new definition of traction vector, dependent on the discontinuity length and the angle. Particularly, two families of this kind of elements are compared: kinematically optimal symmetric and statically and kinematically optimal non-symmetric. The constitutive model to describe the behavior of the material in the symmetric formulation is a traction-displacement jump relationship equipped with softening after reaching the failure surface.

To show the validity of this symmetric formulation, representative numerical examples illustrating the performance of the proposed formulation are presented. It is shown that the non-symmetric family may over or underestimate the energy required to create a discontinuity, as this effect is related with the total length of the discontinuity, fact that is not noticed when the discontinuity path is a straight line.

Keywords: Variational formulation, strong discontinuity, embedded discontinuities, strain localization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1770
1125 Optimal Placement of Piezoelectric Actuators on Plate Structures for Active Vibration Control Using Modified Control Matrix and Singular Value Decomposition Approach

Authors: Deepak Chhabra, Gian Bhushan, Pankaj Chandna

Abstract:

The present work deals with the optimal placement of piezoelectric actuators on a thin plate using Modified Control Matrix and Singular Value Decomposition (MCSVD) approach. The problem has been formulated using the finite element method using ten piezoelectric actuators on simply supported plate to suppress first six modes. The sizes of ten actuators are combined to outline one actuator by adding the ten columns of control matrix to form a column matrix. The singular value of column control matrix is considered as the fitness function and optimal positions of the actuators are obtained by maximizing it with GA. Vibration suppression has been studied for simply supported plate with piezoelectric patches in optimal positions using Linear Quadratic regulator) scheme. It is observed that MCSVD approach has given the position of patches adjacent to each-other, symmetric to the centre axis and given greater vibration suppression than other previously published results on SVD. 

Keywords: Closed loop Average dB gain, Genetic Algorithm (GA), LQR Controller, MCSVD, Optimal positions, Singular Value Decomposition (SVD) Approaches.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3073
1124 Fuzzy Adjacency Matrix in Graphs

Authors: Mahdi Taheri, Mehrana Niroumand

Abstract:

In this paper a new definition of adjacency matrix in the simple graphs is presented that is called fuzzy adjacency matrix, so that elements of it are in the form of 0 and n N n 1 , ∈ that are in the interval [0, 1], and then some charactristics of this matrix are presented with the related examples . This form matrix has complete of information of a graph.

Keywords: Graph, adjacency matrix, fuzzy numbers

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2373
1123 The Symmetric Solutions for Boundary Value Problems of Second-Order Singular Differential Equation

Authors: Li Xiguang

Abstract:

In this paper, by constructing a special operator and using fixed point index theorem of cone, we get the sufficient conditions for symmetric positive solution of a class of nonlinear singular boundary value problems with p-Laplace operator, which improved and generalized the result of related paper.

Keywords: Banach space, cone, fixed point index, singular differential equation, p-Laplace operator, symmetric solutions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1303
1122 The Symmetric Solutions for Three-Point Singular Boundary Value Problems of Differential Equation

Authors: Li Xiguang

Abstract:

In this paper, by constructing a special operator and using fixed point index theorem of cone, we get the sufficient conditions for symmetric positive solution of a class of nonlinear singular boundary value problems with p-Laplace operator, which improved and generalized the result of related paper.

Keywords: Banach space, cone, fixed point index, singular differential equation, p-Laplace operator, symmetric solutions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1414
1121 Inverse Matrix in the Theory of Dynamic Systems

Authors: R. Masarova, M. Juhas, B. Juhasova, Z. Sutova

Abstract:

In dynamic system theory a mathematical model is often used to describe their properties. In order to find a transfer matrix of a dynamic system we need to calculate an inverse matrix. The paper contains the fusion of the classical theory and the procedures used in the theory of automated control for calculating the inverse matrix. The final part of the paper models the given problem by the Matlab.

Keywords: Dynamic system, transfer matrix, inverse matrix, modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2412
1120 Numerical Treatment of Matrix Differential Models Using Matrix Splines

Authors: Kholod M. Abualnaja

Abstract:

This paper consider the solution of the matrix differential models using quadratic, cubic, quartic, and quintic splines. Also using the Taylor’s and Picard’s matrix methods, one illustrative example is included.

Keywords: Matrix Splines, Cubic Splines, Quartic Splines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1702
1119 Some Remarkable Properties of a Hopfield Neural Network with Time Delay

Authors: Kelvin Rozier, Vladimir E. Bondarenko

Abstract:

It is known that an analog Hopfield neural network with time delay can generate the outputs which are similar to the human electroencephalogram. To gain deeper insights into the mechanisms of rhythm generation by the Hopfield neural networks and to study the effects of noise on their activities, we investigated the behaviors of the networks with symmetric and asymmetric interneuron connections. The neural network under the study consists of 10 identical neurons. For symmetric (fully connected) networks all interneuron connections aij = +1; the interneuron connections for asymmetric networks form an upper triangular matrix with non-zero entries aij = +1. The behavior of the network is described by 10 differential equations, which are solved numerically. The results of simulations demonstrate some remarkable properties of a Hopfield neural network, such as linear growth of outputs, dependence of synchronization properties on the connection type, huge amplification of oscillation by the external uniform noise, and the capability of the neural network to transform one type of noise to another.

Keywords: Chaos, Hopfield neural network, noise, synchronization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1890
1118 A Novel Approach of Multilevel Inverter with Reduced Power Electronics Devices

Authors: M. Jagabar Sathik, K. Ramani

Abstract:

In this paper family of multilevel inverter topology with reduced number of power switches is presented. The proposed inverter can generate both even and odd level. The proposed topology is suitable for symmetric structure. The proposed symmetric inverter results in reduction of power switches, power diode and gate driver circuits and also it may further minimize the installation area and cost. To prove the superiority of proposed topology is compared with conventional topologies. The performance of this symmetric multilevel inverter has been tested by computer based simulation and prototype based experimental setup for nine-level inverter is developed and results are verified.

Keywords: Cascaded H- Bridge (CHB), Multilevel Inverter (MLI), Nearest Level Modulation (NLM), Total Harmonic Distortion (THD).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3147
1117 The Relationship of Eigenvalues between Backward MPSD and Jacobi Iterative Matrices

Authors: Zhuan-de Wang, Hou-biao Li, Zhong-xi Gao

Abstract:

In this paper, the backward MPSD (Modified Preconditioned Simultaneous Displacement) iterative matrix is firstly proposed. The relationship of eigenvalues between the backward MPSD iterative matrix and backward Jacobi iterative matrix for block p-cyclic case is obtained, which improves and refines the results in the corresponding references.

Keywords: Backward MPSD iterative matrix, Jacobi iterative matrix, eigenvalue, p-cyclic matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1777
1116 On Positive Definite Solutions of Quaternionic Matrix Equations

Authors: Minghui Wang

Abstract:

The real representation of the quaternionic matrix is definited and studied. The relations between the positive (semi)define quaternionic matrix and its real representation matrix are presented. By means of the real representation, the relation between the positive (semi)definite solutions of quaternionic matrix equations and those of corresponding real matrix equations is established.

Keywords: Matrix equation, Quaternionic matrix, Real representation, positive (semi)definite solutions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1419