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Abstract—This paper highlights a new approach to look at online
principle components analysis (OPCA). Given a data matrix X ∈
R,m×n we characterise the online updates of its covariance as a
matrix perturbation problem. Up to the principle components, it
turns out that online updates of the batch PCA can be captured
by symmetric matrix perturbation of the batch covariance matrix.
We have shown that as n → n0 � 1, the batch covariance and
its update become almost similar. Finally, utilize our new setup of
online updates to find a bound on the angle distance of the principle
components of X and its update.

Keywords—Online data updates, covariance matrix, online
principle component analysis (OPCA), matrix perturbation.

I. INTRODUCTION

ONLINE learning has become an urge in many

applications [5], [6]. As opposed to batch settings, in

online learning we do not have an access to the whole data

we are intended to learn from. Instead, we receive data points

sequentially, one by one, and the ultimate goal is to determine

an adaptive model capturing the overall trend of the whole

data.

Many reserachers have dedecated much of their work to

develop online algorithms, using different approaches, to cope

with such sequential updates of data [9]. However, most of

the algorithms developed in the context of online learning

are essentially based on tweaking the already known models

for batch data, i.e., they become able to learn from data

on-the-fly [7], [8], [18]–[20]. Despite of all evident successes

in developing online models [1], [12], there is, however, a

need to a rigorous theory which can be used to reveal some

aspects, the exiting techniques fails to clarify.

One of the most important online learning problems, which

has received tremendous amounts of investigation, is the

online principle components analysis (OPCA) [2], [10]–[12].

Rougly speaking, PCA aims to extract the main modes of

varition of the data around their mean through computing

new variables called the principle compoeents [9]. PCA has

found applications in various fields such as face regonition

[12], lating sememtic indexing [16], sentiment analysis [13],

industerial process modeling [14], astronomy [15], to name

but few. Expensive computation is one of the main major
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challenges in using PCA technique as it often requires

approximation which resulting in prediction errors.

This paper is a step forward to better understand online PCA

update mechanism providing a new view to look at online

updates of data. This paper is organised as follows. Section

II will give some required mathematical concepts. Section III

presents a detailed description of PCA as a technique with

some exploration of the currant related literatures. Section IV

shows a formulation of online updates of data as a symmetric

matrix perturbation. Section V provides the main result of the

paper. In Section VI we use some matrix perturbation results

to illustrate the significance of our setup.

II. MATHEMATICAL PRELIMINARIES

In this section we will briefly some basic mathematical

concepts. For a vector v ∈ R
n, its Euclidean norm is given

by ||v|| :=
√
vT v̇. For a matrix A ∈ R

m×n, the he spectral

norm of A is defined as ||A|| = max{||Av|| : ||v|| = 1}.

The transpose of A is another matrix obtained by exchanging

its row with its columns and its often denoted by AT . The

matrix A is said to be symmetric if, and only if A = AT . The

singular value decomposition of the matrix A is given by

A = UΣV T ,

where U is an m × m orthonormal matrix , Σ is diagonal

matrix, and V is an n× n orthonormal matrix. The diagonal

entries of the diagonal matrix Σ. σ1, σ2, . . . , σn are known as

the singular values of A. For a matrix S ∈ R
n×n, the scalar λ

is an eigenvalue of S if there exists a non-zero vector v such

that Av = λ. The vector v is referred to as the eigenvector

of S corresponding to the eigenvalue λ. If S is symmetric the

we can write

S = UΛUT ,

where U is an m×m orthonormal matrix and Λ is a diagonal

matrix whose entries are called the eigenvalues of the matrix

S. Conventionally we often list the eigenvalues of S in a

non-increasing order namely, λ1 ≥ λ2 ≥ · · · ≥ λn. It is worth

to add here that

||S|| = σ1 = λ1.

III. PRINCIPLE COMPONENT ANALYSIS

Principle components analysis (PCA) is a very common

method for reducing the dimensionality of data [23]–[26].

To have an idea about PCA we first discuss a related
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concept namely, the covariance matrix. Given the data set of

m-dimensional data points xi. We can defined the matrix

X =

⎛
⎜⎜⎜⎝

x1

x2

. . .

xm

⎞
⎟⎟⎟⎠ .

Lets assume that each columns in the matrix X corresponds

to a data point, whereas each row refers to all measurement of

a particular value xi. Now the covariance matrix of the data

X can be defied as follows.

Cov(X) =
1

n− 1
XXT

Its easy to see the following properties of Cov(X)

• The main diagonal entries of Cov(X) show the variance

of particular measurement features.

• The off-diagonal entries of Cov(X) represent the

covariance between the measurement types.

• Cov(X) is square symmetric m×m matrix

The matrix Cov(X) gives all correlations between all pairs

of data in X . The principle components of the data X are the

eigenvectors of the covariance matrix Cov(X). In other words

they are the singular vectors of the matrix X .

Often, PCA is performed in batch mode in whcih all the

training data are ready for processing (Computing PCA). In

the batch setting there will be no information to be used in

laearning once all the whole available data are trained [27].

In contrast, in online learning data arrive sequentially and in

every time instance we experience new data and that require

an adaptive PCA algorithm to cope with such setting.

Typically PCA is implemented by using either the

eigenvalue decomposition of the covariance matrix Cov(X)

or the SVD of the data matrix X , after centring the data.

Its worth to mention here that computing SVD requires

O(nmmin(n,m) floating point operations [22]. In small sized

data this will be of a reasonable accepted complexity, however,

batch PCA is indeed infeasible in many setting with

• massive datasets for which n and m are, say, in the

thousands or millions

• datasets that change rapidly and may need to be processed

on the fly for instance, databases and streaming data.

In dimensionality reduction, for instance, we require to

project the data into a low dimensional subspace and this can

be easily handled using the SVD of the data matrix X . The

dimension of the choose subspace, say k, should be small

enough so that it reduces the data significantly and in the same

time it should be large enough to retain the main variation

characteristics of the data. In mathematical terms the best

rank-k (Xk) representation of the matrix X is given by

Xk = UkΣkV
T
k =

k∑
i=1

σiuiv
T
i

Updating the above decomposition as new data arrived is

computationally exepensive given the exponential growth of

data in modern applications. Hence effecint (i.e., accurate

and fast) PCA algorithms are in high demand. Over the

years a large number of solutions has emerged from fields. A

numerical resolution to what is so- callked secular equations is

one of the ekigant cinoutation of PCA coputations [28]–[30].

In this approach it has been shown that updating the PCA is

equivalent of finding the zeros of a rational function. In [31],

PCA updates has been formulated as a sum of the eigenvalue

decomposition of a diagonal matrix and a rank-1 matrix.

Incremental SVD is one of the most significant approach for

having an approximate low rank PCA [32]. Incremental PCA

(IPCA) has been around for more than a decades and have

shown efficient performance in various applications [2], [32],

[34]. The candid covariance-free incremental PCA (CCPCA)

developed in [2] is one of the most recent and effective

PCA algorithm which can compute the principle components

of a stream of samples incrementally without estimating the

covariance matrix. For a detailed literture on online pca we

refer the readre to [2], [9]

IV. DATA STREAMS AS PERTURBATIONS

Let’s assume that X be a data matrix with m rows and

n columns. Also assume that X is formed by stacking data

points column by column. In online setting, X will be updated

with new data points, i.e., new columns. So, we assume that X
is updated with the data point ( vector ) xm×1. Accordingly,

we have the following new data matrix

X̄ =
(
Xm×n xm×1

)
m×(n+1)

Now the covariance matrix of the new data matrix can be

obtained as follows

1

n
X̄X̄T =

1

n

(
X x

)( X

x

)T

=
n− 1

n

(
1

n− 1
XXT

)
+
1

n
xxT

In other words we can write

Cov(X̄) =
n− 1

n
Cov(X) +

1

n
xxT (1)

Looking at Equation (1), it is straightforward to see that

• The matrices n−1
n Cov(X) and Cov(X) share the same

eigenvectors.

• if λ is an eigenvalue of Cov (X) then, n−1
n λ is an

eigenvalue of Cov(X). Moreover,

lim
n→n0�1

σ(Cov(X̄)) = σ(Cov(X)),

where σ stands for a matrix spectrum.

• 1
nxx

T is symmetric matrix with a norm equals to
||x||2
n

To make a concrete insight for Equation (1), we consider

the case when m = 2, i.e., a two dimensional feature space.

Figure 1 depicts Equation (1) through its action on an arbitrary

vector v (which can be an eigenvector of Cov(X)). Its clear

that the eigendata of Cov(X̄) eventually converges to the ones

of Cov(X) as we are exposed to a sufficient amount of the

data stream. The word ”sufficient” suggests imposing certain

threshold on the number of data above which new data arrivals
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n−
1

n

C
ov
(X
)v

1
nxx

T v

n−1

n
Cov(X

)v
+

1
n
xx

T v

v

1
nxx

T v
x

Fig. 1 The action of Cov(X̄) on v (the hypotenuse) is a decomposition of
the action of the batch covariance added to the projection of v in the
direction of the new data vector x, weighted by the reciprocal of the

position of x on the queue of the data stream

would be ignored. This in turn could reduce the time and space

complexity of any algorithm using PCA as one of its underling

components.

V. THE MAIN RESULT

Given a data matrix X ∈ R
m×n and a date point x then

1. Up to the principle components, the online updates of the
batch data Cov(X) with the data stream point x(m×1) can
be viewed as

Cov(X̄) = Cov(X) + Δ, where Δ =
1

n
xxT . (2)

2. We have
lim

n→n0�1
Cov(X̄) = Cov(X).

VI. SOME APPLICATIONS OF PROPOSITION V

In this section we make use of some results from

symmetric perturbation theory to characterise some bounds

on the inclination of the updated first principle component

of Cov(X̄), and its corresponding eigenvalue. The analysis is

identical for other principle components.

1. Bound on the Eigenvalues

Following Weyl Theorem ( See, Appendix B), and

considering equation (1) we have

λ1

(
Cov(X̄)

)
= λ1

(
Cov(X̄) =

n− 1

n
Cov(X) + Δ

)

≤ n− 1

n
λ1 (Cov(X)) + λ1(Δ)

=
n− 1

n
λ1 (Cov(X)) +

||x||2
n

.

As the smallest eigenvalue of xxT is zero, we can also

show that

λ1

(
Cov(X̄)

) ≥ n− 1

n
λ1 (Cov(X)) ,

thus we have

n− 1

n
λ1 (Cov(X)) ≤ λ1

(
Cov(X̄)

)
≤ n− 1

n
λ1 (Cov(X)) +

||x||2
n

The above inequity says that the principle components

of the updated data will be always greater or equal to

the batch one!

2. Bound on Eigenspaces Inclination

Assume that V1 and V2 are the subspaces generated

by any corresponding principle components of Cov(X)

and Cov(X̄). Therefore, based on Davis-Kahan Theorem

(See, Appendix B), the angle distance θ between the

eigenspace generated by the principle components of

X and X̄ is bounded by some value depending on the

length of the new added data point x. Namely, we have

sin 2θ ≤ 2‖Δ‖
δ

=
2||x||2
nδ

where δ is gap between the eigenvalues of Cov(X).

It is clear that for large enough n, the two principle

components will coincide, meaning that there will be no

significant change in the maximum direction of variation

of data. This observation is really an interesting! As

it shows that the deviation of the existing principle

component will not exceed the value
||x||2
nδ . As we have

mentioned in Section IV this could be used to infer a

threshold while ruining PCA-based algorithms, that is,

we only process certain amount of the data and ignore

the rest.

VII. EXPERIMENTS

In this section we have used the iris data set ( see, [17]) to

show the convergence of the dominant eigenvalue of Cov(X̄)

to the one of Cov(X) as we experience large amount of

data (i.e., n � 1). In Figure 2, the left subplot shows this

convergence, whereas the right subplot depicts the bound on

the deviation of the first components.

VIII. CONCLUSION

In this paper we contextualized online updates of data as a

matrix perturbation problem. Up to principle components, we

showed that online updating of data is equivalent to perturbing

a scalar multiple of the batch covariance matrix by a symmetric

matrix. It has been shown that as n → n0 � 1, the updated

covariance matrix will become almost similar to the batch

one. Our setup encourages the use of a wide range of matrix

perturbation theoretic results in the context of online learning.

Symmetric perturbation, in particular, is one of the simplest

classes of matrix perturbations which has characteristics that

makes it very useful to reveal many aspects of online learning.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:11, No:8, 2017 

970International Scholarly and Scientific Research & Innovation 11(8) 2017 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

1,
 N

o:
8,

 2
01

7 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

07
84

7.
pd

f



5 10 15 20 25
20

30

40

50

60

70

20 40 60 80 100 120 140
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Fig. 2 The left subplot show the convergence of λ1 Cov(X̄) (dashed blue) to λ1 Cov(X) (solid red) while the right shows the bounds on the deviation of
principle components as we experience more data

APPENDIX

A. Weyl’s Theorem [4]

Assume that A and B are two Hermitian matrices. Assume
that their eigenvalues are ordered in a increasing order as
follows.

λmin = λn(A) ≤ λn−1(A) ≤ λn−2(A)

. . . ≤ λ2(A) ≤ λ1(A) = λmax,

λmin = λn(B) ≤ λn−1(B) ≤ λn−2(B)

. . . ≤ λ2(B) ≤ λ1(B) = λmax,

λmin = λn(A+B) ≤ λn−1(A+B) ≤
λn−2(A+B) . . . ≤ λ2(A+B) ≤ λ1(A+B) = λmax,

then for each k = 1, 2, . . . n, we have

λk(A) + λn(B) ≤ λk(A+B) ≤ λk(A) + λ1(B). �

B. Davis-Kahan, [3]

Let X and Δ be symmetric matrices. Assume that X =
QΛQT = Qdiag(λi)Q

T and X̄ = X + Δ = Q̃diag(λ̃i)Q̃
T .

Also let’s write

Q = (q1, q2, . . . , qn) and Q̃ = (q̃1, q̃2, . . . , q̃n).

Let θi denote the acute angle between the qi and q̃i then,

sin 2θi ≤ 2Δ

mini �=j |λi − λj |
provided that mini �=j |λi − λj | 	= 0.
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