Algebraic Riccati Matrix Equation for Eigen- Decomposition of Special Structured Matrices; Applications in Structural Mechanics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Algebraic Riccati Matrix Equation for Eigen- Decomposition of Special Structured Matrices; Applications in Structural Mechanics

Authors: Mahdi Nouri

Abstract:

In this paper Algebraic Riccati matrix equation is used for Eigen-decomposition of special structured matrices. This is achieved by similarity transformation and then using algebraic riccati matrix equation to triangulation of matrices. The process is decomposition of matrices into small and specially structured submatrices with low dimensions for fast and easy finding of Eigenpairs. Numerical and structural examples included showing the efficiency of present method.

Keywords: Riccati, matrix equation, eigenvalue problem, symmetric, bisymmetric, persymmetric, decomposition, canonical forms, Graphs theory, adjacency and Laplacian matrices.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1088220

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1813

References:


[1] Bathe KJ, Wilson EL. Numerical Methods for Finite Element Analysis. Prentice Hall: Englewood Clffis,NJ, 1976.
[2] Livesley RK. Mathematical Methods for Engineers. Ellis Horwood: Chichester, U.K., 1989.
[3] George J. Simitses, Dewey H. Hodges. Fundamentals of Structural Stability. Elsevier Inc. 2006.
[4] Jennings A, McKeown JJ. Matrix Computation. Wiley: New York, 1992.
[5] A. Kaveh and H. Rahami, New canonical forms for analytical solution of problems in structural mechanics, Communications in Numerical Methods in Engineering, No. 9, 21(2005) 499-513.
[6] Kaveh A., Nouri M. and Taghizadieh N.: Eigensolution for adjacency and Laplacian matrices of large repetitive structural models. Scientia Iranica, 16(2009)481-489.
[7] Nouri M.: Free vibration of large regular repetitive structural structures, International Journal of Science and Engineering Investigations, Volume 1, Issue 1, 2012, Pages 92-96.
[8] Cuppen, J.J.M. “A divide and conquer method for the symmetric tridiagonal eigenproblem”, Numerische Mathematik, 36, pp. 177–195 (1981).
[9] Kaveh A., Nouri M. and Taghizadieh N.: An efficient solution method for the free vibration of large repetitive space structures. Advances in Structural Engineering, 14(2011)151-161.
[10] Zhou K M, Doyle J, Glover K. Robust and Optimal Control. New Jersey: Prentice-Hall, 1996.
[11] Lin Z L. Global control of linear systems with saturating actuators. Automatica, 1998, 34(7): 897-905/
[12] D. A. Bini, B. Iannazzo, B. Meini, and F. Poloni. Nonsymmetric algebraic Riccati equations associated with an M-matrix: recent advances and algorithms. In Dagstuhl Seminar Proceedings, "Numerical Methods for Structured Markov Chains", 07461, 2007.
[13] C.-H. Guo. Nonsymmetric algebraic Riccati equations and Wiener-Hopf factorization for M-matrices. SIAM J. Matrix Anal. Appl., 23(1):225_242 (electronic), 2001.
[14] Ni M L. A note on the maximum solutions of Riccati equations. Automatica, 1991, 27(6): 1059-1060.
[15] Ni Mao-Lin. Design of Robust Control Systems: Theory and Applications (Ph. D. dissertation), Chinese Academy of Space Technology, 1992 (in Chinese).
[16] Zhou K M, Doyle J, Glover K. Robust and Optimal Control. New Jersey: Prentice-Hall, 1996.
[17] Kaveh, A. Structural Mechanics: Graph and Matrix Methods, 3rd ed. Somerset: Research Studies Press, 2004.
[18] A. Kaveh and K. Koohestani, Combinatorial optimization of special graphs for nodal ordering and graph partitioning, Acta Mechanica, Nos. (1-2), 207(2009)95-108. 496-501.
[19] Potter, J. E. 1966. Matrix quadratic solutions. SIAM J. Appl. Math. 14: