Search results for: shock pressure.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1442

Search results for: shock pressure.

1262 Hydrogen Embrittlement in a Coupled Mass Diffusion with Stress near a Blunting Crack Tip for AISI 4135 Pressure Vessel

Authors: H. Dehghan, E. Mahdavi, M. M. Heyhat

Abstract:

In pressure vessels contain hydrogen, the role of hydrogen will be important because of hydrogen cracking problem. It is difficult to predict what is happened in metallurgical field spite of a lot of studies have been searched. The main role in controlling the mass diffusion as driving force is related to stress. In this study, finite element analysis is implemented to estimate material-s behavior associated with hydrogen embrittlement. For this purpose, one model of a pressure vessel is introduced that it has definite boundary and initial conditions. In fact, finite element is employed to solve the sequentially coupled mass diffusion with stress near a crack front in a pressure vessel. Modeling simulation intergrarnular fracture of AISI 4135 steel due to hydrogen is investigated. So, distribution of hydrogen and stress are obtained and they indicate that their maximum amounts occur near the crack front. This phenomenon is happened exactly the region between elastic and plastic field. Therefore, hydrogen is highly mobile and can diffuse through crystal lattice so that this zone is potential to trap high volume of hydrogen. Consequently, crack growth and fast fracture will be happened.

Keywords: Stress Intensity Factor, Mass Diffusion, FEM, Pressure Vessel

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3034
1261 Arterial CO2 Pressure Drives Ventilation with a Time Delay during Recovery from an Impulse-like Exercise without Metabolic Acidosis

Authors: R. Afroundeh, T. Arimitsu, R. Yamanaka, C. S. Lian, T. Yunoki, T. Yano, K. Shirakawa

Abstract:

We investigated this hypothesis that arterial CO2 pressure (PaCO2) drives ventilation (V.E) with a time delay duringrecovery from short impulse-like exercise (10 s) with work load of 200 watts. V.E and end tidal CO2 pressure (PETCO2) were measured continuously during rest, warming up, exercise and recovery periods. PaCO2 was predicted (PaCO2 pre) from PETCO2 and tidal volume (VT). PETCO2 and PaCO2 pre peaked at 20 s of recovery. V.E increased and peaked at the end of exercise and then decreased during recovery; however, it peaked again at 30 s of recovery, which was 10 s later than the peak of PaCO2 pre. The relationship between V. E and PaCO2pre was not significant by using data of them obtained at the same time but was significant by using data of V.E obtained 10 s later for data of PaCO2 pre. The results support our hypothesis that PaCO2 drives V.E with a time delay.

Keywords: Arterial CO2 pressure, impulse-like exercise, time delay, ventilation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1386
1260 Effect of Cooled EGR in Combustion Characteristics of a Direct Injection CI Engine Fuelled with Biodiesel Blend

Authors: Sankar Chandrasekar, Rana Niranchan V.S., Joseph Sidharth Leon

Abstract:

As the demand and prices of various petroleum products have been on the rise in recent years, there is a growing need for alternative fuels. Biodiesel, which consists of alkyl monoesters of fatty acids from vegetable oils and animal fats, is considered as an alternative to petroleum diesel. Biodiesel has comparable performance with that of diesel and has lower brake specific fuel consumption than diesel with significant reduction in emissions of CO, hydrocarbons (HC) and smoke with however, a slight increase in NOx emissions. This paper analyzes the effect of cooled exhaust gas recirculation in the combustion characteristics of a direct injection compression ignition engine using biodiesel blended fuel as opposed to the conventional system. The combustion parameters such as cylinder pressure, heat release rate, delay period and peak pressure were analyzed at various loads. The maximum cylinder pressure reduces as the fraction of biodiesel increases in the blend the maximum rate of pressure rise was found to be higher for diesel at higher engine loads.

Keywords: Cylinder pressure, delay period, EGR, heat release.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1693
1259 Hydrodynamic Simulation of Fixed Bed GTL Reactor Using CFD

Authors: Sh. Shahhosseini, S. Alinia, M. Irani

Abstract:

In this work, axisymetric CFD simulation of fixed bed GTL reactor has been conducted, using computational fluid dynamics (CFD). In fixed bed CFD modeling, when N (tube-to-particle diameter ratio) has a large value, it is common to consider the packed bed as a porous media. Synthesis gas (a mixture of predominantly carbon monoxide and hydrogen) was fed to the reactor. The reactor length was 20 cm, divided to three sections. The porous zone was in the middle section of the reactor. The model equations were solved employing finite volume method. The effects of particle diameter, bed voidage, fluid velocity and bed length on pressure drop have been investigated. Simulation results showed these parameters could have remarkable impacts on the reactor pressure drop.

Keywords: GTL Process, Fixed bed reactor, Pressure drop, CFDsimulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2329
1258 Pressure Angle and Profile Shift Factor Effects on the Natural Frequency of Spur Tooth Design

Authors: Ali Raad Hassan

Abstract:

In this paper, an (irregular) case relating to base circle, root circle, and pressure angle has been discussed and a computer programme has been developed to simulate and plot spur gear tooth profile, including involute and trochoid curves based on the formulation of rack cutter using different values of pressure angle and profile shift factor and it gave the values of all important geometric parameters. The results showed the flexibility of this approach and versatility of the programme to draw many different cases of spur gear teeth of any module, pressure angle, profile shift factor, number of teeth and rack cutter tip radius. The procedure developed can be extended to produce finite element models of heretofore intractable geometrical forms, to exploring fabrication of nonstandard tooth forms also. Finite elements model of these irregular cases have been built using above programme, and modal analysis has been done using ANSYS software, and natural frequencies of these selected cases have been obtained and discussed.

Keywords: involute, trochoid, pressure angle, profile shift factor, natural frequency

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1322
1257 Numerical Simulation of the Kurtosis Effect on the EHL Problem

Authors: S. Gao, S. Srirattayawong

Abstract:

In this study, a computational fluid dynamics (CFD) model has been developed for studying the effect of surface roughness profile on the EHL problem. The cylinders contact geometry, meshing and calculation of the conservation of mass and momentum equations are carried out using the commercial software packages ICEMCFD and ANSYS Fluent. The user defined functions (UDFs) for density, viscosity and elastic deformation of the cylinders as the functions of pressure and temperature are defined for the CFD model. Three different surface roughness profiles are created and incorporated into the CFD model. It is found that the developed CFD model can predict the characteristics of fluid flow and heat transfer in the EHL problem, including the main parameters such as pressure distribution, minimal film thickness, viscosity, and density changes. The results obtained show that the pressure profile at the center of the contact area directly relates to the roughness amplitude. A rough surface with kurtosis value of more than 3 has greater influence over the fluctuated shape of pressure distribution than in other cases.

Keywords: CFD, EHL, Kurtosis, Surface roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2132
1256 Threshold Stress of the Soil Subgrade Evaluation for Highway Formations

Authors: Elsa Eka Putri, N.S.V Kameswara Rao, M. A. Mannan

Abstract:

The objective of this study is to evaluate the threshold stress of the clay with sand subgrade soil. Threshold stress can be defined as the stress level above which cyclic loading leads to excessive deformation and eventual failure. The thickness determination of highways formations using the threshold stress approach is a more realistic assessment of the soil behaviour because it is subjected to repeated loadings from moving vehicles. Threshold stress can be evaluated by plastic strain criterion, which is based on the accumulated plastic strain behaviour during cyclic loadings [1]. Several conditions of the all-round pressure the subgrade soil namely, zero confinement, low all-round pressure and high all-round pressure are investigated. The threshold stresses of various soil conditions are determined. Threshold stress of the soil are 60%, 31% and 38.6% for unconfined partially saturated sample, low effective stress saturated sample, high effective stress saturated sample respectively.

Keywords: threshold stress, cyclic loading, pore water pressure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2556
1255 Application of Residual Correction Method on Hyperbolic Thermoelastic Response of Hollow Spherical Medium in Rapid Transient Heat Conduction

Authors: Po-Jen Su, Huann-Ming Chou

Abstract:

In this article, we used the residual correction method to deal with transient thermoelastic problems with a hollow spherical region when the continuum medium possesses spherically isotropic thermoelastic properties. Based on linear thermoelastic theory, the equations of hyperbolic heat conduction and thermoelastic motion were combined to establish the thermoelastic dynamic model with consideration of the deformation acceleration effect and non-Fourier effect under the condition of transient thermal shock. The approximate solutions of temperature and displacement distributions are obtained using the residual correction method based on the maximum principle in combination with the finite difference method, making it easier and faster to obtain upper and lower approximations of exact solutions. The proposed method is found to be an effective numerical method with satisfactory accuracy. Moreover, the result shows that the effect of transient thermal shock induced by deformation acceleration is enhanced by non-Fourier heat conduction with increased peak stress. The influence on the stress increases with the thermal relaxation time.

Keywords: Maximum principle, non-Fourier heat conduction, residual correction method, thermo-elastic response.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1718
1254 Application of an in vitro Alveolus Model in Evaluating the Alveolar Response to Pressure- Induced Injury

Authors: Divya D. Nalayanda, William B. Fulton, Tza-Huei Wang, Fizan Abdullah

Abstract:

In an effort to understand the preliminary effects of aerodynamic stress on alveolar epithelial cells, we developed a multifluidic cell culture platform capable of supporting alveolar cultures at an air-liquid interface under constant air flow and exposure to varying pressure stimuli on the apical side while providing nourishment on the basolateral plane. Our current study involved utilizing the platform to study the effect of basement membrane coating and addition of dexamethasone on cellular response to pressure in A549 and H441 alveolar epithelial cells.

Keywords: Aerodynamic stress, Air-liquid interface, Alveolar, Dexamethasone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1446
1253 Ultrasound Mechanical Index as a Parameter Affecting of the Ability of Proliferation of Cells

Authors: Z. Hormozi Moghaddam, M. Mokhtari-Dizaji, M. Movahedin, M. E. Ravari

Abstract:

Mechanical index (MI) is used for quantifying acoustic cavitation and the relationship between acoustic pressure and the frequency. In this study, modeling of the MI was applied to provide treatment protocol and to understand the effective physical processes on reproducibility of stem cells. The acoustic pressure and MI equations are modeled and solved to estimate optimal MI for 28, 40, 150 kHz and 1 MHz frequencies. Radial and axial acoustic pressure distribution was extracted. To validate the results of the modeling, the acoustic pressure in the water and near field depth was measured by a piston hydrophone. Results of modeling and experiments show that the model is consistent well to experimental results with 0.91 and 0.90 correlation of coefficient (p<0.05) for 1 MHz and 40 kHz. Low intensity ultrasound with 0.40 MI is more effective on the proliferation rate of the spermatogonial stem cells during the seven days of culture, in contrast, high MI has a harmful effect on the spermatogonial stem cells. This model provides proper treatment planning in vitro and in vivo by estimating the cavitation phenomenon.

Keywords: Ultrasound, mechanical index, modeling, stem cell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 914
1252 Biocompatibility of NiTi Alloy Implants in vivo

Authors: Gul Tosun, Emine Ünsaldi Latif Özler, Nuri Orhan, Ali Said Durmus, Hatice Eröksüz

Abstract:

In this study, the powders of Ni and Ti with 50.5 at.% Ni for 12 h were blended and cold pressed at the different pressures (50, 75 and100 MPa).The porous product obtained after Ni-Ti compacts were synthesized by SHS (self-propagating hightemperature synthesis) in the different preheating temperatures (200, 250 and 300oC) and heating rates (30, 60 and 90oC/min). The effects of the pressure, preheating temperature and heating rate were investigated on biocompatibility in vivo. The porosity in the synthesized products was in the range of 50.7–59.7 vol. %. The pressure, preheating temperature and heating rate were found to have an important effect on the biocompatibility in-vivo of the synthesized products. Max. fibrotic tissue within the porous implant was found in vivo periods (6 months), in which compacting pressure 100MPa.

Keywords: NiTi, biomaterial, SHS, biocompatibility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2779
1251 CFD Analysis of Two Phase Flow in a Horizontal Pipe – Prediction of Pressure Drop

Authors: P. Bhramara, V. D. Rao, K. V. Sharma , T. K. K. Reddy

Abstract:

In designing of condensers, the prediction of pressure drop is as important as the prediction of heat transfer coefficient. Modeling of two phase flow, particularly liquid – vapor flow under diabatic conditions inside a horizontal tube using CFD analysis is difficult with the available two phase models in FLUENT due to continuously changing flow patterns. In the present analysis, CFD analysis of two phase flow of refrigerants inside a horizontal tube of inner diameter, 0.0085 m and 1.2 m length is carried out using homogeneous model under adiabatic conditions. The refrigerants considered are R22, R134a and R407C. The analysis is performed at different saturation temperatures and at different flow rates to evaluate the local frictional pressure drop. Using Homogeneous model, average properties are obtained for each of the refrigerants that is considered as single phase pseudo fluid. The so obtained pressure drop data is compared with the separated flow models available in literature.

Keywords: Adiabatic conditions, CFD analysis, Homogeneousmodel and Liquid – Vapor flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3649
1250 Flow Characteristics around Rectangular Obstacles with the Varying Direction of Obstacles

Authors: Hee-Chang Lim

Abstract:

The study aims to understand the surface pressure distribution around the bodies such as the suction pressure in the leading edge on the top and side-face when the aspect ratio of bodies and the wind direction are changed, respectively. We carried out the wind tunnel measurement and numerical simulation around a series of rectangular bodies (40d×80w×80h, 80d×80w×80h, 160d×80w×80h, 80d×40w×80h and 80d×160w×80h in mm3) placed in a deep turbulent boundary layer. Based on a modern numerical platform, the Navier-Stokes equation with the typical 2-equation (k-ε model) and the DES (Detached Eddy Simulation) turbulence model has been calculated, and they are both compared with the measurement data. Regarding the turbulence model, the DES model makes a better prediction comparing with the k-ε model, especially when calculating the separated turbulent flow around a bluff body with sharp edged corner. In order to observe the effect of wind direction on the pressure variation around the cube (e.g., 80d×80w×80h in mm), it rotates at 0º, 10º, 20º, 30º, and 45º, which stands for the salient wind directions in the tunnel. The result shows that the surface pressure variation is highly dependent upon the approaching wind direction, especially on the top and the side-face of the cube. In addition, the transverse width has a substantial effect on the variation of surface pressure around the bodies, while the longitudinal length has little or no influence.

Keywords: Rectangular bodies, wind direction, aspect ratio, surface pressure distribution, wind-tunnel measurement, k-ε model, DES model, CFD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 863
1249 Using Reverse Osmosis Membrane for Chromium Removal from Aqueous Solution

Authors: S. A. Mousavi Rad, S. A. Mirbagheri, T. Mohammadi

Abstract:

In this paper, removal of chromium(VI) from aqueous solution has been researched using reverse osmosis. The influence of transmembrane pressure and feed concentration on permeate flux, water recovery, permeate concentration, and salt rejection was studied. The results showed that according to the variation of transmembrane pressure and feed concentration, the permeate flux and salt rejection were in the range 19.17 to 58.75 l/m2.min and 99.51 to 99.8 %, respectively. The highest permeate flux, 58.75 l/m2.min, and water recovery, 42.47 %, were obtained in the highest pressure and the lowest feed concentration. On the other hand, the lowest permeate concentration, 0.01 mg/l, and the highest salt rejection, 99.8 %, were obtained in the highest pressure and the lowest feed concentration.

Keywords: solution, Chromium, Removal, Reverse osmosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2545
1248 Hydrogen Sulphide Removal Using a Novel Biofilter Media

Authors: Z. M. Shareefdeen, A. Aidan, W.Ahmed, M. B. Khatri, M. Islam, R. Lecheheb, F. Shams

Abstract:

Air emissions from waste treatment plants often consist of a combination of Volatile Organic Compounds (VOCs) and odors. Hydrogen sulfide is one of the major odorous gases present in the waste emissions coming from municipal wastewater treatment facilities. Hydrogen sulfide (H2S) is odorous, highly toxic and flammable. Exposure to lower concentrations can result in eye irritation, a sore throat and cough, shortness of breath, and fluid in the lungs. Biofiltration has become a widely accepted technology for treating air streams containing H2S. When compared with other nonbiological technologies, biofilter is more cost-effective for treating large volumes of air containing low concentrations of biodegradable compounds. Optimization of biofilter media is essential for many reasons such as: providing a higher surface area for biofilm growth, low pressure drop, physical stability, and good moisture retention. In this work, a novel biofilter media is developed and tested at a pumping station of a municipality located in the United Arab Emirates (UAE). The media is found to be very effective (>99%) in removing H2S concentrations that are expected in pumping stations under steady state and shock loading conditions.

Keywords: biofilter media, hydrogen sulphide, pumping station, biofiltration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1896
1247 Numerical Investigation of Flow Past Cylinderin Cross Flow

Authors: M. H. Alhajeri, Jasem Alrajhi, Mohsen Alardhi, Saleh Alhajeri

Abstract:

A numerical prediction of flow in a tube bank is reported. The flow regimes considered cover a wide range of Reynolds numbers, which range from 380 to 99000 and which are equivalent to a range of inlet velocities from very low (0.072 m/s) to very high (60 m/s). In this study, calculations were made using the standard k-e model with standard wall function. The drag coefficient, skin friction drag, pressure drag, and pressure distribution around a tube were investigated. As the velocity increased, the drag coefficient decreased until the velocity exceeded 45 m/s, after which it increased. Furthermore, the pressure drag and skin friction drag depend on the velocity.

Keywords: Numerical, Fluid, Flow, Turbine, Cooling, Blade.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1929
1246 Study on Optimization Design of Pressure Hull for Underwater Vehicle

Authors: Qasim Idrees, Gao Liangtian, Liu Bo, Miao Yiran

Abstract:

In order to improve the efficiency and accuracy of the pressure hull structure, optimization of underwater vehicle based on response surface methodology, a method for optimizing the design of pressure hull structure was studied. To determine the pressure shell of five dimensions as a design variable, the application of thin shell theory and the Chinese Classification Society (CCS) specification was carried on the preliminary design. In order to optimize variables of the feasible region, different methods were studied and implemented such as Opt LHD method (to determine the design test sample points in the feasible domain space), parametric ABAQUS solution for each sample point response, and the two-order polynomial response for the surface model of the limit load of structures. Based on the ultimate load of the structure and the quality of the shell, the two-generation genetic algorithm was used to solve the response surface, and the Pareto optimal solution set was obtained. The final optimization result was 41.68% higher than that of the initial design, and the shell quality was reduced by about 27.26%. The parametric method can ensure the accuracy of the test and improve the efficiency of optimization.

Keywords: Parameterization, response surface, structure optimization, pressure hull.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1099
1245 Parametric Investigation of Aircraft Door’s Emergency Power Assist System (EPAS)

Authors: Marshal D. Kafle, Jun H. Kim, Hyun W. Been, Kyoung M. Min, Sung H. Kim

Abstract:

Fluid viscous damping systems are well suited for many air vehicles subjected to shock and vibration. These damping system work with the principle of viscous fluid throttling through the orifice to create huge pressure difference between compression and rebound chamber and obtain the required damping force. One application of such systems is its use in aircraft door system to counteract the door’s velocity and safely stop it. In exigency situations like crash or emergency landing where the door doesn’t open easily, possibly due to unusually tilting of fuselage or some obstacles or intrusion of debris obstruction to move the parts of the door, such system can be combined with other systems to provide needed force to forcefully open the door and also securely stop it simultaneously within the required time i.e. less than 8 seconds. In the present study, a hydraulic system called snubber along with other systems like actuator, gas bottle assembly which together known as emergency power assist system (EPAS) is designed, built and experimentally studied to check the magnitude of angular velocity, damping force and time required to effectively open the door. Whenever needed, the gas pressure from the bottle is released to actuate the actuator and at the same time pull the snubber’s piston to operate the emergency opening of the door. Such EPAS installed in the suspension arm of the aircraft door is studied explicitly changing parameters like orifice size, oil level, oil viscosity and bypass valve gap and its spring of the snubber at varying temperature to generate the optimum design case. Comparative analysis of the EPAS at several cases is done and conclusions are made. It is found that during emergency condition, the system opening time and angular velocity, when snubber with 0.3mm piston and shaft orifice and bypass valve gap of 0.5 mm with its original spring is used, shows significant improvement over the old ones.

Keywords: Aircraft Door Damper, Bypass Valve, Emergency Power Assist System, Hydraulic Damper, Oil viscosity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4076
1244 Static/kinetic Friction Behaviour of a Clutch Facing Material: Effects of Temperature and Pressure

Authors: A. Chaikittiratana, S. Koetniyom, S. Lakkam

Abstract:

The feasibility of applying a simple and cost effective sliding friction testing apparatus to study the friction behaviour of a clutch facing material, effected by the variation of temperature and contact pressure, was investigated. It was found that the method used in this work was able to give a convenient and cost effective measurement of friction coefficients and their transitions of a clutch facing material. The obtained results will be useful for the development process of new facing materials.

Keywords: Static/kinetic friction, sliding friction testing apparatus, contact pressure and temperature dependent of friction coefficients.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4310
1243 Hypertensive Response to Maximal Exercise Test in Young and Middle Age Hypertensive on Blood Pressure Lowering Medication: Monotherapy vs. Combination Therapy

Authors: James Patrick A. Diaz, Raul E. Ramboyong

Abstract:

Background: Hypertensive response during maximal exercise test provides important information on the level of blood pressure control and evaluation of treatment. Method: A single center retrospective descriptive study was conducted among 117 young (aged 20 to 40) and middle age (aged 40 to 65) hypertensive patients, who underwent treadmill stress test. Currently on maintenance frontline medication either monotherapy (Angiotensin-converting enzyme inhibitor/Angiotensin receptor blocker [ACEi/ARB], Calcium channel blocker [CCB], Diuretic - Hydrochlorthiazide [HCTZ]) or combination therapy (ARB+CCB, ARB+HCTZ), who attained a maximal exercise on treadmill stress test (TMST) with hypertensive response (systolic blood pressure: male >210 mm Hg, female >190 mm Hg, diastolic blood pressure >100 mmHg, or increase of >10 mm Hg at any time during the test), on Bruce and Modified Bruce protocol. Exaggerated blood pressure response during exercise (systolic [SBP] and diastolic [DBP]), peak exercise blood pressure (SBP and DBP), recovery period (SBP and DBP) and test for ischemia and their antihypertensive medication/s were investigated. Analysis of variance and chi-square test were used for statistical analysis. Results: Hypertensive responses on maximal exercise test were seen mostly among female population (P < 0.000) and middle age (P < 0.000) patients. Exaggerated diastolic blood pressure responses were significantly lower in patients who were taking CCB (P < 0.004). A longer recovery period that showed a delayed decline in SBP was observed in patients taking ARB+HCTZ (P < 0.036). There were no significant differences in the level of exaggerated systolic blood pressure response and during peak exercise (both systolic and diastolic) in patients using either monotherapy or combination antihypertensives. Conclusion: Calcium channel blockers provided lower exaggerated diastolic BP response during maximal exercise test in hypertensive middle age patients. Patients on combination therapy using ARB+HCTZ exhibited a longer recovery period of systolic blood pressure.

Keywords: Antihypertensive, exercise test, hypertension, hypertensive response.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 881
1242 Learning Materials of Atmospheric Pressure Plasma Process: Application in Wrinkle-Resistant Finishing of Cotton Fabric

Authors: C. W. Kan

Abstract:

Cotton fibre is a commonly-used natural fibre because of its good fibre strength, high moisture absorption behaviour and minimal static problems. However, one of the main drawbacks of cotton fibre is wrinkling after washing, which is recently overcome by wrinkle-resistant treatment. 1,2,3,4-butanetetracarboxylic acid (BTCA) could improve the wrinkle-resistant properties of cotton fibre. Although the BTCA process is an effective method for wrinkle resistant application of cotton fabrics, reduced fabric strength was observed after treatment. Therefore, this paper would explore the use of atmospheric pressure plasma treatment under different discharge powers as a pretreatment process to enhance the application of BTCA process on cotton fabric without generating adverse effect. The aim of this study is to provide learning information to the users to know how the atmospheric pressure plasma treatment can be incorporated in textile finishing process with positive impact.

Keywords: Learning materials, atmospheric pressure plasma treatment, cotton, wrinkle-resistant, BTCA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1349
1241 A Preliminary Technology Assessment Analysis for the use of High Pressure Treatment on Halloumi Cheese

Authors: Michalis Menicou, Stavros Christofi, Niki Chartosia, Vassos Vassiliou, Marios Charalambides

Abstract:

This paper presents preliminary results of a technology assessment analysis for the use of high pressure treatment (HPT) on Halloumi cheese. In particular, it presents the importance of this traditional Cyprus cheese to the island-s economy, explains its production process, and gives a brief introduction to HPT and its application on cheese. More importantly, it offers preliminary results of HPT of Halloumi samples and a preliminary economic feasibility study on the financial implications of the introduction of such technology.

Keywords: Economic feasibility analysis, high pressure treatment, Halloumi cheese, technology assessment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1687
1240 Effect of Relative Permeability on Well Testing Behavior of Naturally Fractured Lean Gas Condensate Reservoirs

Authors: G.H. Montazeri, Z. Dastkhan, H. Aliabadi

Abstract:

Gas condensate Reservoirs show complicated thermodynamic behavior when their pressure reduces to under dew point pressure. Condensate blockage around the producing well cause significant reduction of production rate as well bottom-hole pressure drops below saturation pressure. The main objective of this work was to examine the well test analysis of naturally fractured lean gas condensate reservoir and investigate the effect of condensate formed around the well-bore on behavior of single phase pseudo pressure and its derivative curves. In this work a naturally fractured lean gas condensate reservoir is simulated with compositional simulator. Different sensitivity analysis done on Corry parameters and result of simulator is feed to analytical well testing software. For consideration of these phenomena eighteen compositional models with Capillary number effect are constructed. Matrix relative permeability obeys Corry relative permeability and relative permeability in fracture is linear. Well testing behavior of these models are studied and interpreted. Results show different sensitivity analysis on relative permeability of matrix does not have strong effect on well testing behavior even most part of the matrix around the well is occupied with condensate.

Keywords: Lean gas, fractured condensate reservoir, capillary number, well testing analysis, relative permeability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2913
1239 Finite Element Analysis of Crack Welding Process

Authors: Thomas Jin-Chee Liu

Abstract:

The numerical simulation of the crack welding process is reported in this paper. The thermo-electro-structural coupled-field finite element analysis is adopted to investigate the welding process of crack surfaces. In the simulation, the pressure-dependent and temperature-dependent electrical contact conditions are considered. From the results, the crack surfaces can melt and weld together under the compressive load and electric current. The contact pressure effect must be considered in the finite element analysis to obtain more practical results.

Keywords: Crack welding, contact pressure, Joule heating, finite element, coupled-field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2313
1238 Intervention of Sambucus Nigra Polyphenolic Extract in Experimental Arterial Hypertension

Authors: Manuela Ciocoiu, Laur Badescu, Oana Badulescu, Magda Badescu

Abstract:

The research focuses on the effects of polyphenols extracted from Sambucus nigra fruit, using an experimental arterial hypertension pattern, as well as their influence on the oxidative stress. The results reveal the normalization of the reduced glutathion concentration, as well as a considerable reduction in the malondialdehide serum concentration by the polyphenolic protection. The rat blood pressure values were recorded using a CODATM system, which uses a non-invasive blood pressure measuring method. All the measured blood pressure components revealed a biostatistically significant (p<0.05) blood pressure drop between the AHT and the AHT+P groups. The results prove that oxidative stress is considerably lower, statistically speaking, in rats with hypertension but also provided with natural polyphenolic protection from Sambucus nigra fruits than in the rats belonging to the control group. In addition to the demonstrated antioxidant effects, natural polyphenols also have other biological properties that might contribute to the cardioprotective effects.

Keywords: Arterial hypertension, Oxidative stress, Sambucus nigra

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3225
1237 Design of Rigid L- Shaped Retaining Walls

Authors: A. Rouili

Abstract:

Cantilever L-shaped walls are known to be relatively economical as retaining solution. The design starts by proportioning the wall dimensions for which the stability is checked for. A ratio between the lengths of the base and the stem, falling between 0.5 to 0.7 ensure in most case the stability requirements, however, the displacement pattern of the wall in terms of rotations and translations, and the lateral pressure profile, do not have the same figure for all wall’s proportioning, as it is usually assumed. In the present work the results of a numerical analysis are presented, different wall geometries were considered. The results show that the proportioning governs the equilibrium between the instantaneous rotation and the translation of the wall-toe, also, the lateral pressure estimation based on the average value between the at-rest and the active pressure, recommended by most design standards, is found to be not applicable for all walls.

Keywords: Cantilever wall, proportioning, numerical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9377
1236 Finite Difference Method of the Seismic Analysis of Earth Dam

Authors: Alaoua Bouaicha, Fahim Kahlouche, Abdelhamid Benouali

Abstract:

Many embankment dams have suffered failures during earthquakes due to the increase of pore water pressure under seismic loading. After analyzing of the behavior of embankment dams under severe earthquakes, major advances have been attained in the understanding of the seismic action on dams. The present study concerns numerical analysis of the seismic response of earth dams. The procedure uses a nonlinear stress-strain relation incorporated into the code FLAC2D based on the finite difference method. This analysis provides the variation of the pore water pressure and horizontal displacement.

Keywords: Earthquake, numerical analysis, FLAC2D, displacement, Embankment Dam, pore water pressure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2397
1235 Correlation and Prediction of Biodiesel Density

Authors: Nieves M. C. Talavera-Prieto, Abel G. M. Ferreira, António T. G. Portugal, Rui J. Moreira, Jaime B. Santos

Abstract:

The knowledge of biodiesel density over large ranges of temperature and pressure is important for predicting the behavior of fuel injection and combustion systems in diesel engines, and for the optimization of such systems. In this study, cottonseed oil was transesterified into biodiesel and its density was measured at temperatures between 288 K and 358 K and pressures between 0.1 MPa and 30 MPa, with expanded uncertainty estimated as ±1.6 kg⋅m- 3. Experimental pressure-volume-temperature (pVT) cottonseed data was used along with literature data relative to other 18 biodiesels, in order to build a database used to test the correlation of density with temperarure and pressure using the Goharshadi–Morsali–Abbaspour equation of state (GMA EoS). To our knowledge, this is the first that density measurements are presented for cottonseed biodiesel under such high pressures, and the GMA EoS used to model biodiesel density. The new tested EoS allowed correlations within 0.2 kg·m-3 corresponding to average relative deviations within 0.02%. The built database was used to develop and test a new full predictive model derived from the observed linear relation between density and degree of unsaturation (DU), which depended from biodiesel FAMEs profile. The average density deviation of this method was only about 3 kg.m-3 within the temperature and pressure limits of application. These results represent appreciable improvements in the context of density prediction at high pressure when compared with other equations of state.

Keywords: Biodiesel, Correlation, Density, Equation of state, Prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3470
1234 Effect of Greywater Irrigation on Air-Water Interfacial area in Porous Medium

Authors: A. H. M. Faisal Anwar

Abstract:

In this study, the effect of greywater irrigation on airwater interfacial area is investigated. Several soil column experiments were conducted for different greywater irrigation to develop the pressure-saturation curves. Surface tension was measured for different greywater concentration and fitted for Gibbs adsorption equation. Pressure-saturation curves show that the reduction of capillary rise stops when it reaches its critical micelle concentration (CMC). A simple theory is derived from pressure-saturation curves for calculating air-water interfacial area in porous medium during greywater irrigation by introducing a term 'hydraulic radius' for the pores. This term diminishes any effect of pore shapes on the air-water interfacial area. The air-water interfacial area was calculated using the pressure-saturation curves and found that it decreases with increasing moisture content. But no significant effect was observed on air-water interfacial area for different greywater irrigation. A maximum of 10% variation in interfacial area was observed at the residual saturation zone.

Keywords: Greywater, Irrigation, Interfacial area, Surface tension, Porous medium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1658
1233 Thermal Performance Analysis of Nanofluids in a Concetric Heat Exchanger Equipped with Turbulators

Authors: Feyza Eda Akyurek, Bayram Sahin, Kadir Gelis, Eyuphan Manay, Murat Ceylan

Abstract:

Turbulent forced convection heat transfer and pressure drop characteristics of Al2O3–water nanofluid flowing through a concentric tube heat exchanger with and without coiled wire turbulators were studied experimentally. The experiments were conducted in the Reynolds number ranging from 4000 to 20000, particle volume concentrations of 0.8 vol.% and 1.6 vol.%. Two turbulators with the pitches of 25 mm and 39 mm were used. The results of nanofluids indicated that average Nusselt number increased much more with increasing Reynolds number compared to that of pure water. Thermal conductivity enhancement by the nanofluids resulted in heat transfer enhancement. Once the pressure drop of the alumina/water nanofluid was analyzed, it was nearly equal to that of pure water at the same Reynolds number range. It was concluded that nanofluids with the volume fractions of 0.8 and 1.6 did not have a significant effect on pressure drop change. However, the use of wire coils in heat exchanger enhanced heat transfer as well as the pressure drop.

Keywords: Turbulators, heat exchanger, nanofluids, heat transfer enhancement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1621