Search results for: numerical analysis.
10194 Role of Association Rule Mining in Numerical Data Analysis
Authors: Sudhir Jagtap, Kodge B. G., Shinde G. N., Devshette P. M
Abstract:
Numerical analysis naturally finds applications in all fields of engineering and the physical sciences, but in the 21st century, the life sciences and even the arts have adopted elements of scientific computations. The numerical data analysis became key process in research and development of all the fields [6]. In this paper we have made an attempt to analyze the specified numerical patterns with reference to the association rule mining techniques with minimum confidence and minimum support mining criteria. The extracted rules and analyzed results are graphically demonstrated. Association rules are a simple but very useful form of data mining that describe the probabilistic co-occurrence of certain events within a database [7]. They were originally designed to analyze market-basket data, in which the likelihood of items being purchased together within the same transactions are analyzed.Keywords: Numerical data analysis, Data Mining, Association Rule Mining
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 285410193 Stabilization of the Bernoulli-Euler Plate Equation: Numerical Analysis
Authors: Carla E. O. de Moraes, Gladson O. Antunes, Mauro A. Rincon
Abstract:
The aim of this paper is to study the internal stabilization of the Bernoulli-Euler equation numerically. For this, we consider a square plate subjected to a feedback/damping force distributed only in a subdomain. An algorithm for obtaining an approximate solution to this problem was proposed and implemented. The numerical method used was the Finite Difference Method. Numerical simulations were performed and showed the behavior of the solution, confirming the theoretical results that have already been proved in the literature. In addition, we studied the validation of the numerical scheme proposed, followed by an analysis of the numerical error; and we conducted a study on the decay of the energy associated.
Keywords: Bernoulli-Euler Plate Equation, Numerical Simulations, Stability, Energy Decay, Finite Difference Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 202910192 A Study on Prediction of Cavitation for Centrifugal Pump
Authors: Myung Jin Kim, Hyun Bae Jin, Wui Jun Chung
Abstract:
In this study, to accurately predict cavitation of a centrifugal pump, numerical analysis was compared with experimental results modeled on a small industrial centrifugal pump. In this study, numerical analysis was compared with experimental results modeled on a small industrial centrifugal pump for reliable prediction on cavitation of a centrifugal pump. To improve validity of the numerical analysis, transient analysis was conducted on the calculated domain of full-type geometry, such as an experimental apparatus. The numerical analysis from the results was considered to be a reliable prediction of cavitaion.Keywords: Centrifugal Pump, Cavitation, NPSH, CFD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 421310191 A Study on the Heading of Spur Gears: Numerical Analysis and Experiments
Authors: M.Zadshakouyan, E.Abdi Sobbouhi, H.Jafarzadeh
Abstract:
In this study, the precision heading process of spur gears has been investigated by means of numerical analysis. The effect of some parameters such as teeth number and module on the forming force and material flow were presented. The simulation works were performed rigid-plastic finite element method using DEFORM 3D software. In order to validate the estimated numerical results, they were compared with those obtained experimentally during heading of spur gear using lead as a model material. Results showed that the optimum number of gear teeth is between 10 to 20, that is because of being the specific pressure in its minimum value.Keywords: Heading, spur gear, numerical analysis, experiments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 194610190 A First Course in Numerical Methods with “Mathematica“
Authors: Andrei A. Kolyshkin
Abstract:
In the present paper some recommendations for the use of software package “Mathematica" in a basic numerical analysis course are presented. The methods which are covered in the course include solution of systems of linear equations, nonlinear equations and systems of nonlinear equations, numerical integration, interpolation and solution of ordinary differential equations. A set of individual assignments developed for the course covering all the topics is discussed in detail.Keywords: Numerical methods, "Mathematica", e-learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 365510189 Numerical Methods versus Bjerksund and Stensland Approximations for American Options Pricing
Authors: Marasovic Branka, Aljinovic Zdravka, Poklepovic Tea
Abstract:
Numerical methods like binomial and trinomial trees and finite difference methods can be used to price a wide range of options contracts for which there are no known analytical solutions. American options are the most famous of that kind of options. Besides numerical methods, American options can be valued with the approximation formulas, like Bjerksund-Stensland formulas from 1993 and 2002. When the value of American option is approximated by Bjerksund-Stensland formulas, the computer time spent to carry out that calculation is very short. The computer time spent using numerical methods can vary from less than one second to several minutes or even hours. However to be able to conduct a comparative analysis of numerical methods and Bjerksund-Stensland formulas, we will limit computer calculation time of numerical method to less than one second. Therefore, we ask the question: Which method will be most accurate at nearly the same computer calculation time?
Keywords: Bjerksund and Stensland approximations, Computational analysis, Finance, Options pricing, Numerical methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 605510188 On a New Inverse Polynomial Numerical Scheme for the Solution of Initial Value Problems in Ordinary Differential Equations
Authors: R. B. Ogunrinde
Abstract:
This paper presents the development, analysis and implementation of an inverse polynomial numerical method which is well suitable for solving initial value problems in first order ordinary differential equations with applications to sample problems. We also present some basic concepts and fundamental theories which are vital to the analysis of the scheme. We analyzed the consistency, convergence, and stability properties of the scheme. Numerical experiments were carried out and the results compared with the theoretical or exact solution and the algorithm was later coded using MATLAB programming language.Keywords: Differential equations, Numerical, Initial value problem, Polynomials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 176010187 Dissipation of Higher Mode using Numerical Integration Algorithm in Dynamic Analysis
Authors: Jin Sup Kim, Woo Young Jung, Minho Kwon
Abstract:
In general dynamic analyses, lower mode response is of interest, however the higher modes of spatially discretized equations generally do not represent the real behavior and not affects to global response much. Some implicit algorithms, therefore, are introduced to filter out the high-frequency modes using intended numerical error. The objective of this study is to introduce the P-method and PC α-method to compare that with dissipation method and Newmark method through the stability analysis and numerical example. PC α-method gives more accuracy than other methods because it based on the α-method inherits the superior properties of the implicit α-method. In finite element analysis, the PC α-method is more useful than other methods because it is the explicit scheme and it achieves the second order accuracy and numerical damping simultaneously.Keywords: Dynamic, α-Method, P-Method, PC α-Method, Newmark method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 306710186 Performance Comparison and Analysis of Different Schemes and Limiters
Authors: Wang Wen-long, Li Hua, Pan Sha
Abstract:
Eight difference schemes and five limiters are applied to numerical computation of Riemann problem. The resolution of discontinuities of each scheme produced is compared. Numerical dissipation and its estimation are discussed. The result shows that the numerical dissipation of each scheme is vital to improve scheme-s accuracy and stability. MUSCL methodology is an effective approach to increase computational efficiency and resolution. Limiter should be selected appropriately by balancing compressive and diffusive performance.
Keywords: Scheme; Limiter, Numerical simulation, Riemannproblem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 247510185 The Frame Analysis and Testing for Student Formula
Authors: Tanawat Limwathanagura, Chartree Sithananun, Teekayu Limchamroon, Thanyarat Singhanart
Abstract:
The objective of this paper is to study the analysis and testing for determining the torsional stiffness of the student formula-s space frame. From past study, the space frame for Chulalongkorn University Student Formula team used in 2011 TSAE Auto Challenge Student Formula in Thailand was designed by considering required mass and torsional stiffness based on the numerical method and experimental method. The numerical result was compared with the experimental results to verify the torsional stiffness of the space frame. It can be seen from the large error of torsional stiffness of 2011 frame that the experimental result can not verify by the numerical analysis due to the different between the numerical model and experimental setting. In this paper, the numerical analysis and experiment of the same 2011 frame model is performed by improving the model setting. The improvement of both numerical analysis and experiment are discussed to confirm that the models from both methods are same. After the frame was analyzed and tested, the results are compared to verify the torsional stiffness of the frame. It can be concluded that the improved analysis and experiments can used to verify the torsional stiffness of the space frame.
Keywords: Space Frame, Student Formula, Torsional Stiffness, TSAE Auto Challenge
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 798710184 Numerical Investigation of the Optimal Spatial Domain Discretization for the 2-D Analysis of a Darrieus Vertical-Axis Water Turbine
Authors: M. Raciti Castelli, S. De Betta, E. Benini
Abstract:
The optimal grid spacing and turbulence model for the 2D numerical analysis of a vertical-axis water turbine (VAWaterT) operating in a 2 m/s freestream current has been investigated. The results of five different spatial domain discretizations and two turbulence models (k-ω SST and k-ε RNG) have been compared, in order to gain the optimal y+ parameter distribution along the blade walls during a full rotor revolution. The resulting optimal mesh has appeared to be quite similar to that obtained for the numerical analysis of a vertical-axis wind turbine.Keywords: CFD, vertical axis water turbine, NACA 0025, blade y+.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 204110183 Numerical Analysis of the SIR-SI Differential Equations with Application to Dengue Disease Mapping in Kuala Lumpur, Malaysia
Authors: N. A. Samat, D. F. Percy
Abstract:
The main aim of this study is to describe and introduce a method of numerical analysis in obtaining approximate solutions for the SIR-SI differential equations (susceptible-infectiverecovered for human populations; susceptible-infective for vector populations) that represent a model for dengue disease transmission. Firstly, we describe the ordinary differential equations for the SIR-SI disease transmission models. Then, we introduce the numerical analysis of solutions of this continuous time, discrete space SIR-SI model by simplifying the continuous time scale to a densely populated, discrete time scale. This is followed by the application of this numerical analysis of solutions of the SIR-SI differential equations to the estimation of relative risk using continuous time, discrete space dengue data of Kuala Lumpur, Malaysia. Finally, we present the results of the analysis, comparing and displaying the results in graphs, table and maps. Results of the numerical analysis of solutions that we implemented offers a useful and potentially superior model for estimating relative risks based on continuous time, discrete space data for vector borne infectious diseases specifically for dengue disease.
Keywords: Dengue disease, disease mapping, numerical analysis, SIR-SI differential equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 267710182 A Numerical Investigation on the Dynamic Stall of a Wind Turbine Section Using Different Turbulent Models
Authors: S. A. Ahmadi, S. Sharif, R. Jamshidi
Abstract:
In this article, the flow behavior around a NACA 0012 airfoil which is oscillating with different Reynolds numbers and in various amplitudes has been investigated numerically. Numerical simulations have been performed with ANSYS software. First, the 2- D geometry has been studied in different Reynolds numbers and angles of attack with various numerical methods in its static condition. This analysis was to choose the best turbulent model and comparing the grids to have the optimum one for dynamic simulations. Because the analysis was to study the blades of wind turbines, the Reynolds numbers were not arbitrary. They were in the range of 9.71e5 to 22.65e5. The angle of attack was in the range of -41.81° to 41.81°. By choosing the forward wind speed as the independent parameter, the others like Reynolds and the amplitude of the oscillation would be known automatically. The results show that the SST turbulent model is the best choice that leads the least numerical error with respect the experimental ones. Also, a dynamic stall phenomenon is more probable at lower wind speeds in which the lift force is less.
Keywords: Dynamic stall, Numerical simulation, Wind turbine, Turbulent Model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 199710181 Numerical Analysis for the Performance of a Thermoelectric Generator According to Engine Exhaust Gas Thermal Conditions
Authors: Jinkyu Park, Yungjin Kim, Byungdeok In, Sangki Park, Kihyung Lee
Abstract:
Internal combustion engines rejects 30-40% of the energy supplied by fuel to the environment through exhaust gas. thus, there is a possibility for further significant improvement of efficiency with the utilization of exhaust gas energy and its conversion to mechanical energy or electrical energy. The Thermo-Electric Generator (TEG) will be located in the exhaust system and will make use of an energy flow between the warmer exhaust gas and the external environment. Predict to th optimum position of temperature distribution and the performance of TEG through numerical analysis. The experimental results obtained show that the power output significantly increases with the temperature difference between cold and hot sides of a thermoelectric generator.Keywords: Thermoelectric generator, Numerical analysis, Seebeck coefficient, Figure of merit
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 226310180 Some Results on the Generalized Higher Rank Numerical Ranges
Authors: Mohsen Zahraei
Abstract:
In this paper, the notion of rank−k numerical range of rectangular complex matrix polynomials are introduced. Some algebraic and geometrical properties are investigated. Moreover, for Є > 0, the notion of Birkhoff-James approximate orthogonality sets for Є−higher rank numerical ranges of rectangular matrix polynomials is also introduced and studied. The proposed definitions yield a natural generalization of the standard higher rank numerical ranges.Keywords: Rank−k numerical range, isometry, numerical range, rectangular matrix polynomials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 157410179 Numerical Simulations of Flood and Inundation in Jobaru River Basin Using Laser Profiler Data
Authors: Hiroto Nakashima, Toshihiro Morita, Koichiro Ohgushi
Abstract:
Laser Profiler (LP) data from aerial laser surveys have been increasingly used as topographical inputs to numerical simulations of flooding and inundation in river basins. LP data has great potential for reproducing topography, but its effective usage has not yet been fully established. In this study, flooding and inundation are simulated numerically using LP data for the Jobaru River basin of Japan’s Saga Plain. The analysis shows that the topography is reproduced satisfactorily in the computational domain with urban and agricultural areas requiring different grid sizes. A 2-D numerical simulation shows that flood flow behavior changes as grid size is varied.
Keywords: LP data, numerical simulation, topological analysis, mesh size.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 152410178 Numerical Study for Structural Design of Composite Rotor with Crack Initiation
Authors: A. Chellil, A. Nour, S. Lecheb, H. Mechakra, A. Bouderba, H. Kebir
Abstract:
In this paper, a coupled damage effect in the instability of a composite rotor is presented, under dynamic loading response in the harmonic analysis condition. The analysis of the stress which operates the rotor is done. Calculations of different energies and the virtual work of the aerodynamic loads from the rotor blade are developed. The use of the composite material for the rotor offers a good stability. Numerical calculations on the model developed prove that the damage effect has a negative effect on the stability of the rotor. The study of the composite rotor in transient system allowed determining the vibratory responses due to various excitations.
Keywords: Rotor, composite, damage, finite element, numerical.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 224110177 Assessment of Slope Stability by Continuum and Discontinuum Methods
Authors: Taleb Hosni Abderrahmane, Berga Abdelmadjid
Abstract:
The development of numerical analysis and its application to geomechanics problems have provided geotechnical engineers with extremely powerful tools. One of the most important problems in geotechnical engineering is the slope stability assessment. It is a very difficult task due to several aspects such the nature of the problem, experimental consideration, monitoring, controlling, and assessment. The main objective of this paper is to perform a comparative numerical study between the following methods: The Limit Equilibrium (LEM), Finite Element (FEM), Limit Analysis (LAM) and Distinct Element (DEM). The comparison is conducted in terms of the safety factors and the critical slip surfaces. Through the results, we see the feasibility to analyse slope stability by many methods.Keywords: Comparison, factor of safety, geomechanics, numerical methods, slope analysis, slip surfaces.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 225910176 Reliability Verification of the Performance Evaluation of Multiphase Pump
Authors: Joon-Hyung Kim, Him-Chan Lee, Jin-Hyuk Kim, Yong-Kab Lee, Young-Seok Choi
Abstract:
The crude oil in an oil well exists in various phases such as gas, seawater, and sand, as well as oil. Therefore, a phase separator is needed at the front of a single-phase pump for pressurization and transfer. On the other hand, the application of a multiphase pump can provide such advantages as simplification of the equipment structure and cost savings, because there is no need for a phase separation process. Therefore, the crude oil transfer method using a multiphase pump is being applied to recently developed oil wells. Due to this increase in demand, technical demands for the development of multiphase pumps are sharply increasing, but the progress of research into related technologies is insufficient, due to the nature of multiphase pumps that require high levels of skills. This study was conducted to verify the reliability of pump performance evaluation using numerical analysis, which is the basis of the development of a multiphase pump. For this study, a model was designed by selecting the specifications of this study. The performance of the designed model was evaluated through numerical analysis and experiment. The results of the performance evaluation were compared to verify the reliability of the result using numerical analysis.
Keywords: Multiphase pump, Numerical analysis, Experiment, Performance evaluation, Reliability verification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 312210175 A Numerical Approach for Static and Dynamic Analysis of Deformable Journal Bearings
Authors: D. Benasciutti, M. Gallina, M. Gh. Munteanu, F. Flumian
Abstract:
This paper presents a numerical approach for the static and dynamic analysis of hydrodynamic radial journal bearings. In the first part, the effect of shaft and housing deformability on pressure distribution within oil film is investigated. An iterative algorithm that couples Reynolds equation with a plane finite elements (FE) structural model is solved. Viscosity-to-pressure dependency (Vogel- Barus equation) is also included. The deformed lubrication gap and the overall stress state are obtained. Numerical results are presented with reference to a typical journal bearing configuration at two different inlet oil temperatures. Obtained results show the great influence of bearing components structural deformation on oil pressure distribution, compared with results for ideally rigid components. In the second part, a numerical approach based on perturbation method is used to compute stiffness and damping matrices, which characterize the journal bearing dynamic behavior.Keywords: Journal bearing, finite elements, deformation, dynamic analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 202310174 Numerical Simulation for a Shallow Braced Excavation of Campus Building
Authors: Sao-Jeng Chao, Wen-Cheng Chen, Wei-Humg Lu
Abstract:
In order to prevent encountering unpredictable factors, geotechnical engineers always conduct numerical analysis for braced excavation design. Simulation work in advance can predict the response of subsequent excavation and thus will be designed to increase the security coefficient of construction. The parameters that are considered include geological conditions, soil properties, soil distributions, loading types, and the analysis and design methods. National Ilan University is located on the LanYang plain, mainly deposited by clayey soil and loose sand, and thus is vulnerable to external influence displacement. National Ilan University experienced a construction of braced excavation with a complete program of monitoring excavation. This study takes advantage of a one-dimensional finite element method RIDO to simulate the excavation process. The predicted results from numerical simulation analysis are compared with the monitored results of construction to explore the differences between them. Numerical simulation analysis of the excavation process can be used to analyze retaining structures for the purpose of understanding the relationship between the displacement and supporting system. The resulting deformation and stress distribution from the braced excavation cab then be understand in advance. The problems can be prevented prior to the construction process, and thus acquire all the affected important factors during design and construction.
Keywords: Excavation, numerical simulation, rido, retaining structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 91110173 Optimization of Lakes Aeration Process
Authors: Mohamed Abdelwahed
Abstract:
The aeration process via injectors is used to combat the lack of oxygen in lakes due to eutrophication. A 3D numerical simulation of the resulting flow using a simplified model is presented. In order to generate the best dynamic in the fluid with respect to the aeration purpose, the optimization of the injectors location is considered. We propose to adapt to this problem the topological sensitivity analysis method which gives the variation of a criterion with respect to the creation of a small hole in the domain. The main idea is to derive the topological sensitivity analysis of the physical model with respect to the insertion of an injector in the fluid flow domain. We propose in this work a topological optimization algorithm based on the studied asymptotic expansion. Finally we present some numerical results, showing the efficiency of our approachKeywords: Quasi Stokes equations, Numerical simulation, topological optimization, sensitivity analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 146110172 A New Method to Solve a Non Linear Differential System
Authors: Seifedine Kadry
Abstract:
In this article, our objective is the analysis of the resolution of non-linear differential systems by combining Newton and Continuation (N-C) method. The iterative numerical methods converge where the initial condition is chosen close to the exact solution. The question of choosing the initial condition is answered by N-C method.
Keywords: Continuation Method, Newton Method, Finite Difference Method, Numerical Analysis and Non-Linear partial Differential Equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 138310171 Symbolic Analysis of Large Circuits Using Discrete Wavelet Transform
Authors: Ali Al-Ataby , Fawzi Al-Naima
Abstract:
Symbolic Circuit Analysis (SCA) is a technique used to generate the symbolic expression of a network. It has become a well-established technique in circuit analysis and design. The symbolic expression of networks offers excellent way to perform frequency response analysis, sensitivity computation, stability measurements, performance optimization, and fault diagnosis. Many approaches have been proposed in the area of SCA offering different features and capabilities. Numerical Interpolation methods are very common in this context, especially by using the Fast Fourier Transform (FFT). The aim of this paper is to present a method for SCA that depends on the use of Wavelet Transform (WT) as a mathematical tool to generate the symbolic expression for large circuits with minimizing the analysis time by reducing the number of computations.Keywords: Numerical Interpolation, Sparse Matrices, SymbolicAnalysis, Wavelet Transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 153910170 Numerical Modelling of Effective Diffusivity in Bone Tissue Engineering
Authors: Ayesha Sohail, Khadija Maqbool, Anila Asif, Haroon Ahmad
Abstract:
These days, the field of tissue engineering is getting serious attention due to its usefulness. Bone tissue engineering helps to address and sort-out the critical sized and non-healing orthopedic problems by the creation of manmade bone tissue. We will design and validate an efficient numerical model, which will simulate the effective diffusivity in bone tissue engineering. Our numerical model will be based on the finite element analysis of the diffusion-reaction equations. It will have the ability to optimize the diffusivity, even at multi-scale, with the variation of time. It will also have a special feature “parametric sweep”, with which we will be able to predict the oxygen, glucose and cell density dynamics, more accurately. We will fix these problems by modifying the governing equations, by selecting appropriate spatio-temporal finite element schemes and by transient analysis.
Keywords: Bone tissue engineering, Transient Analysis, Scaffolds, fabrication techniques.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 245110169 Numerical Analysis of Laminar to Turbulent Transition on the DU91-W2-250 Airfoil
Authors: M. Raciti Castelli, G. Grandi, E. Benini
Abstract:
This paper presents a study of laminar to turbulent transition on a profile specifically designed for wind turbine blades, the DU91-W2-250, which belongs to a class of wind turbine dedicated airfoils, developed by Delft University of Technology. A comparison between the experimental behavior of the airfoil studied at Delft wind tunnel and the numerical predictions of the commercial CFD solver ANSYS FLUENT® has been performed. The prediction capabilities of the Spalart-Allmaras turbulence model and of the γ-θ Transitional model have been tested. A sensitivity analysis of the numerical results to the spatial domain discretization has also been performed using four different computational grids, which have been created using the mesher GAMBIT®. The comparison between experimental measurements and CFD results have allowed to determine the importance of the numerical prediction of the laminar to turbulent transition, in order not to overestimate airfoil friction drag due to a fully turbulent-regime flow computation.
Keywords: CFD, wind turbine, DU91-W2-250, laminar to turbulent transition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 305910168 Iteration Acceleration for Nonlinear Coupled Parabolic-Hyperbolic System
Authors: Xia Cui, Guang-wei Yuan, Jing-yan Yue
Abstract:
A Picard-Newton iteration method is studied to accelerate the numerical solution procedure of a class of two-dimensional nonlinear coupled parabolic-hyperbolic system. The Picard-Newton iteration is designed by adding higher-order terms of small quantity to an existing Picard iteration. The discrete functional analysis and inductive hypothesis reasoning techniques are used to overcome difficulties coming from nonlinearity and coupling, and theoretical analysis is made for the convergence and approximation properties of the iteration scheme. The Picard-Newton iteration has a quadratic convergent ratio, and its solution has second order spatial approximation and first order temporal approximation to the exact solution of the original problem. Numerical tests verify the results of the theoretical analysis, and show the Picard-Newton iteration is more efficient than the Picard iteration.
Keywords: Nonlinearity, iterative acceleration, coupled parabolic hyperbolic system, quadratic convergence, numerical analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 155110167 Numerical Simulation of Three-Dimensional Cavitating Turbulent Flow in Francis Turbines with ANSYS
Authors: Raza Abdulla Saeed
Abstract:
In this study, the three-dimensional cavitating turbulent flow in a complete Francis turbine is simulated using mixture model for cavity/liquid two-phase flows. Numerical analysis is carried out using ANSYS CFX software release 12, and standard k-ε turbulence model is adopted for this analysis. The computational fluid domain consist of spiral casing, stay vanes, guide vanes, runner and draft tube. The computational domain is discretized with a threedimensional mesh system of unstructured tetrahedron mesh. The finite volume method (FVM) is used to solve the governing equations of the mixture model. Results of cavitation on the runner’s blades under three different boundary conditions are presented and discussed. From the numerical results it has been found that the numerical method was successfully applied to simulate the cavitating two-phase turbulent flow through a Francis turbine, and also cavitation is clearly predicted in the form of water vapor formation inside the turbine. By comparison the numerical prediction results with a real runner; it’s shown that the region of higher volume fraction obtained by simulation is consistent with the region of runner cavitation damage.Keywords: Computational Fluid Dynamics, Hydraulic Francis Turbine, Numerical Simulation, Two-Phase Mixture Cavitation Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 321310166 Thermomechanical Damage Modeling of F114 Carbon Steel
Authors: A. El Amri, M. El Yakhloufi Haddou, A. Khamlichi
Abstract:
The numerical simulation based on the Finite Element Method (FEM) is widely used in academic institutes and in the industry. It is a useful tool to predict many phenomena present in the classical manufacturing forming processes such as fracture. But, the results of such numerical model depend strongly on the parameters of the constitutive behavior model. The influences of thermal and mechanical loads cause damage. The temperature and strain rate dependent materials’ properties and their modelling are discussed. A Johnson-Cook Model of damage has been selected for the numerical simulations. Virtual software called the ABAQUS 6.11 is used for finite element analysis. This model was introduced in order to give information concerning crack initiation during thermal and mechanical loads.
Keywords: Thermomechanical fatigue, failure, numerical simulation, fracture, damages.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 148610165 Dynamic Behaviour of Earth Dams for Variation of Earth Material Stiffness
Authors: Y. Parish, F. Najaei Abadi
Abstract:
This paper presents a numerical analysis of the seismic behaviour of earth dams. Analysis is conducted for the solid phase. It may correspond to the response of the dam before water filling. Analysis is conducted for a simple case which concerns the elastic response of the dam. Numerical analyses are conducted using the FLAC3D program. The behaviour of the Shell and core of the dam and the foundation behaviour is assumed to be elastic. Result shows the influence of the variation of the shear modulus of the core and shell on the seismic amplification of the dam. It can be observed that the variation of the shearing modulus of the core leads to a moderate increase in the dynamic amplification and the increase in the shell shearing modulus leads to a significant increase in the dynamic amplification.Keywords: Numerical, earth dam, seismic, dynamic, core, FLAC3D.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2099