Search results for: mineral compounds
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 572

Search results for: mineral compounds

152 The Investigation of Precipitation Conditions of Chevreul’s Salt

Authors: Turan Çalban, Fatih Sevim, Oral Laçin

Abstract:

In this study, the precipitation conditions of Chevreul’s salt were evaluated. The structure of Chevreul’s salt was examined by considering the previous studies. Thermodynamically, the most important precipitation parameters were pH, temperature, and sulphite-copper(II) ratio. The amount of Chevreul’s salt increased with increasing the temperature and sulphite-copper(II) ratio at the certain range, while it increased with decreasing the pH value at the chosen range. The best solution medium for recovery of Chevreul’s salt is sulphur dioxide gas-water system. Moreover, the soluble sulphite salts are used as efficient precipitating reagents. Chevreul’s salt is generally used to produce the highly pure copper powders from synthetic copper sulphate solutions and impure leach solutions. When the pH of the initial ammoniacal solution is greater than 8.5, ammonia in the medium is not free, and Chevreul’s salt from solution does not precipitate. In contrast, copper ammonium sulphide is precipitated. The pH of the initial solution containing ammonia for precipitating of Chevreul’s salt must be less than 8.5.

Keywords: Chevreul’s salt, copper sulphites, mixed-valence sulphite compounds, precipitating.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1656
151 Liquid-Liquid Equilibrium for the Binary Mixtures of α-Pinene + Water and α-Terpineol + Water

Authors: Herti Utami, Sutijan, Roto, Wahyudi Budi Sediawan

Abstract:

α-Pinene is the main component of the most turpentine oils. The hydration of α-pinene with acid catalysts leads to a complex mixture of monoterpenes. In order to obtain more valuable products, the α-pinene in the turpentine can be hydrated in dilute mineral acid solutions to produce α-terpineol. The design of separation processes requires information on phase equilibrium and related thermodynamic properties. This paper reports the results of study on liquid-liquid equilibrium (LLE) of system containing α- pinene + water and α-terpineol + water. Binary LLE for α-pinene + water system, and α-terpineol + water systems were determined by experiment at 301K and atmospheric pressure. The two component mixture was stirred for about 30min, then the mixture was left for about 2h for complete phase separation. The composition of both phases was analyzed by using a Gas Chromatograph. The experimental data were correlated by considering both NRTL and UNIQUAC activity coefficient models. The LLE data for the system of α-pinene + water and α-terpineol + water were correlated successfully by the NRTL model. The experimental data were not satisfactorily fitted by the UNIQUAC model. The NRTL model (α =0.3) correlates the LLE data for the system of α-pinene + water at 301K with RMSD of 0.0404%. And the NRTL model (α =0.61) at 301K with RMSD of 0.0058 %. The NRTL model (α =0.3) correlates the LLE data for the system of α- terpineol + water at 301K with RMSD of 0.1487% and the NRTL model (α =0.6) at 301K with RMSD of 0.0032%, between the experimental and calculated mole fractions.

Keywords: α-Pinene, α-Terpineol, Liquid-liquid Equilibrium, NRTL model, UNIQUAC model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4927
150 Analysis of Sulphur-Oxidizing Bacteria Attack on Concrete Based On Waste Materials

Authors: A. Eštoková, M. Kovalčíková, A. Luptáková, A. Sičáková, M. Ondová

Abstract:

Concrete durability as an important engineering property of concrete, determining the service life of concrete structures very significantly, can be threatened and even lost due to the interactions of concrete with external environment. Bio-corrosion process caused by presence and activities of microorganisms producing sulphuric acid is a special type of sulphate deterioration of concrete materials. The effects of sulphur-oxidizing bacteria Acidithiobacillus thiooxidans on various concrete samples, based on silica fume and zeolite, were investigated in laboratory during 180 days. A laboratory study was conducted to compare the performance of concrete samples in terms of the concrete deterioration influenced by the leaching of calcium and silicon compounds from the cement matrix. The changes in the elemental concentrations of calcium and silicon in both solid samples and liquid leachates were measured by using X – ray fluorescence method. Experimental studies confirmed the silica fume based concrete samples were found out to have the best performance in terms of both silicon and calcium ions leaching.

Keywords: Bio-corrosion, concrete, leaching, bacteria.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2617
149 Enhanced Coagulation of Disinfection By-Products Precursors in Porsuk Water Resource, Eskisehir

Authors: Zehra Yigit, Hatice Inan, Guven Seydioglu, Vedat Uyak

Abstract:

Natural organic matter (NOM) is heterogeneous mixture of organic compounds that enter the water media from animal and plant remains, domestic and industrial wastes. Researches showed that NOM is likely precursor material for disinfection by products (DBPs). Chlorine very commenly used for disinfection purposes and NOM and chlorine reacts then Trihalomethane (THM) and Haloacetic acids (HAAs) which are cancerogenics for human health are produced. The aim of the study is to search NOM removal by enhanced coagulation from drinking water source of Eskisehir which is supplied from Porsuk Dam. Recently, Porsuk dam water is getting highly polluted and therefore NOM concentration is increasing. Enhanced coagulation studies were evaluated by measurement of Dissolved Organic Carbon (DOC), UV absorbance at 254 nm (UV254), and different trihalomethane formation potential (THMFP) tests. Results of jar test experiments showed that NOM can be removed from water about 40-50 % of efficiency by enhanced coagulation. Optimum coagulant type and coagulant dosages were determined using FeCl3 and Alum.

Keywords: Chlorination, Disinfection by-products, DOC, Enhanced Coagulation, NOM, Porsuk, UV254.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2173
148 Hydrogenation of CO2 to Methanol over Copper-Zinc Oxide-Based Catalyst

Authors: S. F. H. Tasfy, N. A. M. Zabidi, M. S. Shaharun

Abstract:

Carbon dioxide is highly thermochemical stable molecules where it is very difficult to activate the molecule and achieve higher catalytic conversion into alcohols or other hydrocarbon compounds. In this paper, series of the bimetallic Cu/ZnO-based catalyst supported by SBA-15 were systematically prepared via impregnation technique with different Cu: Zn ratio for hydrogenation of CO2 to methanol. The synthesized catalysts were characterized by transmission electron microscopy (TEM), temperature programmed desorption, reduction, oxidation and pulse chemisorption (TPDRO), and surface area determination was also performed. All catalysts were tested with respect to the hydrogenation of CO2 to methanol in microactivity fixed-bed reactor at 250oC, 2.25 MPa, and H2/CO2 ratio of 3. The results demonstrate that the catalytic structure, activity, and methanol selectivity was strongly affected by the ratio between Cu: Zn, Where higher catalytic activity of 14 % and methanol selectivity of 92 % was obtained over Cu/ZnO-SBA-15 catalyst with Cu:Zn ratio of 7:3 wt. %. Comparing with the single catalyst, the synergetic between Cu and Zn provides additional active sites to adsorb more H2 and CO2 and accelerate the CO2 conversion, resulting in higher methanol production under mild reaction conditions.

Keywords: Hydrogenation of carbon dioxide, methanol synthesis, Cu/ZnO-based catalyst, mesoporous silica (SBA-15), and metal ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 939
147 Rapid Expansion Supercritical Solution (RESS) Carbon Dioxide as an Environmental Friendly Method for Ginger Rhizome Solid Oil Particles Formation

Authors: N. A. Zainuddin, I. Norhuda, I. S. Adeib, A. N. Mustapa, S. H. Sarijo

Abstract:

Recently, RESS (Rapid Expansion Supercritical Solution) method has been used by researchers to produce fine particles for pharmaceutical drug substances. Since RESS technology acknowledges a lot of benefits compare to conventional method of ginger extraction, it is suggested to use this method to explore particle formation of bioactive compound from powder ginger. The objective of this research is to produce direct solid oil particles formation from ginger rhizome which contains valuable compounds by using RESS-CO2 process. RESS experiments were carried using extraction pressure of 3000, 4000, 5000, 6000 and 7000psi and at different extraction temperature of 40, 45, 50, 55, 60, 65 and 70°C for 40 minutes extraction time and contant flowrate (24ml/min). From the studies conducted, it was found that at extraction pressure 5000psi and temperature 40°C, the smallest particle size obtained was 2.22μm on 99 % reduction from the original size of 370μm.

Keywords: Particle size, RESS, solid oil particle, supercritical carbon dioxide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 919
146 Mechanical Characterization of Mango Peel Flour and Biopolypropylene Composites Compatibilized with PP-g-IA

Authors: J. Gomez-Caturla, L. Quiles-Carrillo, J. Ivorra-Martinez, D. Garcia-Garcia, R. Balart

Abstract:

The present work reports on the development of wood plastic composites based on biopolypropylene (BioPP) and mango peel flour (MPF) by extrusion and injection molding processes. PP-g-IA and dicumyl peroxide (DCP) have been used as a compatibilizer and as a free radical initiator for reactive extrusion, respectively. Mechanical and morphological properties have been characterized in order to study the compatibility of the blends. The obtained results showed that DCP and PP-g-IA improved the stiffness of BioPP in terms of elastic modulus. Moreover, they positively increased the tensile strength and elongation at break of the blends in comparison with the sample that only had BioPP and MPF on its composition, improving the affinity between both compounds. DCP and PP-g-IA even seem to have certain synergy, which was corroborated through Field Emission Scanning Electron Microscopy (FESEM) analysis. Images showed that the MPF particles had greater adhesion to the polymer matrix when PP-g-IA and DCP were added. This effect was more intense when both elements were added, observing an almost inexistent gap between MPF particles and the BioPP matrix.

Keywords: Biopolypropylene, compatibilization, mango peel flour, wood plastic composite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 324
145 Ozone Assisted Low Temperature Catalytic Benzene Oxidation over Al2O3, SiO2, AlOOH Supported Ni/Pd Catalytic

Authors: V. Georgiev

Abstract:

Catalytic oxidation of benzene assisted by ozone, on alumina, silica, and boehmite-supported Ni/Pd catalysts was investigated at 353 K to assess the influence of the support on the reaction. Three bimetallic Ni/Pd nanosized samples with loading 4.7% of Ni and 0.17% of Pd supported on SiO2, AlOOH and Al2O3 were synthesized by the extractive-pyrolytic method. The phase composition was characterized by means of XRD and the surface area and pore size were estimated using Brunauer–Emmett–Teller (BET) and Barrett–Joyner–Halenda (BJH) methods. At the beginning of the reaction, catalysts were significantly deactivated due to the accumulation of intermediates on the catalyst surface and after 60 minutes it turned stable. Ni/Pd/AlOOH catalyst showed the highest steady-state activity in comparison with the Ni/Pd/SiO2 and Ni/Pd/Al2O3 catalysts. Their activity depends on the ozone decomposition potential of the catalysts because of generating oxidizing active species. The sample with the highest ozone decomposition ability which correlated to the surface area of the support oxidizes benzene to the highest extent.

Keywords: Ozone, catalysts, oxidation, Volatile organic compounds, VOCs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 557
144 Selenium Content in Agricultural Soils and Wheat from the Balkan Peninsula

Authors: S. Krustev, V. Angelova, P. Zaprjanova

Abstract:

Selenium (Se) is an essential micro-nutrient for human and animals but it is highly toxic. Its organic compounds play an important role in biochemistry and nutrition of the cells. Concentration levels of this element in the different regions of the world vary considerably. This study aimed to compare the availability and levels of the Se in some rural areas of the Balkan Peninsula and relationship with the concentrations of other trace elements. For this purpose soil samples and wheat grains from different regions of Bulgaria, Serbia, Nord Macedonia, Romania, and Greece situated far from large industrial centers have been analyzed. The main methods for their determination were the atomic spectral techniques – atomic absorption and plasma atomic emission. As a result of this study, data on microelements levels from the main grain-producing regions of the Balkan Peninsula were determined and systematized. The presented results confirm the low levels of Se in this region: 0.222– 0.962 mg.kg-1 in soils and 0.001 - 0.005 mg.kg-1 in wheat grains and require measures to offset the effect of this deficiency.

Keywords: Agricultural soils, Balkan Peninsula, rural areas, selenium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 590
143 Microstructure, Compressive Strength and Transport Properties of High Strength Self-Compacting Concretes Containing Natural Pumice and Zeolite

Authors: Kianoosh Samimi, Siham Kamali-Bernard, Ali Akbar Maghsoudi

Abstract:

Due to the difficult placement and vibration between reinforcements of reinforced concrete and the defects that it may cause, the use of self-compacting concrete (SCC) is becoming more widespread. Ordinary Portland Cement (OPC) is the most widely used binder in the construction industry. However, the manufacture of this cement results in a significant amount of CO2 being released, which is detrimental to the environment. Thus, an alternative to reduce the cost of SCC is the use of more economical and environmental mineral additives in partial or total substitution of Portland cement. Our study is in this context and aims to develop SCCs both economic and ecological. Two natural pozzolans such as pumice and zeolite are chosen in this research. This research tries to answer questions including the microstructure of the two types of natural pozzolan and their influence on the mechanical properties as well as on the transport property of SCC. Based on the findings of this study, the studied zeolite is a clinoptilolite that presents higher pozzolan activity compared to pumice. However, the use of zeolite decreases the compressive strength of SCC composites. On the contrary, the compressive strength in SCC containing of pumice increases at both early and long term ages with a remarkable increase at long term. A correlation is obtained between the compressive strength with permeable pore and capillary absorption. Also, the results concerning compressive strength and transport property are well justified by evaporable and non-evaporable water content measurement. This paper shows that the substitution of Portland cement by 15% of pumice or 10% of zeolite in HSSCC is suitable in all aspects. 

Keywords: SCC, concrete, pumice, zeolite, durability, transport.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 828
142 Effect of Chloroform on Aerobic Biodegradation of Organic Solvents in Pharmaceutical Wastewater

Authors: Balasubramanian P, Ligy Philip, S. Murty Bhallamudi

Abstract:

In this study, cometabolic biodegradation of chloroform was experimented with mixed cultures in the presence of various organic solvents like methanol, ethanol, isopropanol, acetone, acetonitrile and toluene as these are predominant discharges in pharmaceutical industries. Toluene and acetone showed higher specific chloroform degradation rate when compared to other compounds. Cometabolic degradation of chloroform was further confirmed by observation of free chloride ions in the medium. An extended Haldane model, incorporating the inhibition due to chloroform and the competitive inhibition between primary substrates, was developed to predict the biodegradation of primary substrates, cometabolic degradation of chloroform and the biomass growth. The proposed model is based on the use of biokinetic parameters obtained from single substrate degradation studies. The model was able to satisfactorily predict the experimental results of ternary and quaternary mixtures. The proposed model can be used for predicting the performance of bioreactors treating discharges from pharmaceutical industries.

Keywords: Chloroform, Cometabolic biodegradation, Competitive inhibition, Extended Haldane model, Pharmaceuticalindustry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2749
141 Statistical Analysis of the Factors that Influence the Properties of Blueberries from Cultivar Bluecrop

Authors: Raquel P. F. Guiné, Susana R. Matos, Daniela V. T. A. Costa, Fernando J. Gonçalves

Abstract:

Because blueberries are worldwide recognized as a good source of beneficial components, their consumption has increased in the past decades, and so have the scientific works about their properties. Hence, this work was undertaken to evaluate the effect of some production and conservation factors on the properties of blueberries from cultivar Bluecrop. The physical and chemical analyses were done according to established methodologies and then all data was treated using software SPSS for assessment of the possible differences among the factors investigated and/or the correlations between the variables at study. The results showed that location of production influenced some of the berries properties (caliber, sugars, antioxidant activity, color and texture) and that the age of the bushes was correlated with moisture, sugars and acidity, as well as lightness. On the other hand, altitude of the farm only was correlated to sugar content. With regards to conservation, it influenced only anthocyanins content and DPPH antioxidant activity. Finally, the type of extract and the order of extraction had a pronounced influence on all the phenolic properties evaluated.

Keywords: Antioxidant activity, blueberry, conservation, geographical origin, phenolic compounds, statistical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2088
140 Effect of Copper on Microstructure and Mechanical Properties of Construction Steel

Authors: Olatunde I. Sekunowo, Stephen I. Durowaye, Oluwashina P. Gbenebor

Abstract:

Copper being one of the major intrinsic residual impurities in steel possesses the tendency to induce severe microstructural distortions if not controlled within certain limits. Hence, this paper investigates the effect of this element on the mechanical properties of construction steel with a view to ascertain its safe limits for effective control. The experiment entails collection of statistically scheduled samples of hot rolled profiles with varied copper concentrations in the range of 0.12-0.39 wt. %. From these samples were prepared standard test specimens subjected to tensile, impact, hardness and microstructural analyses. Results show a rather huge compromise in mechanical properties as the specimens demonstrated 54.3%, 74.2% and 64.9% reduction in tensile strength, impact energy and hardness respectively as copper content increases from 0.12 wt. % to 0.39 wt. %. The steel’s abysmal performance is due to the severe distortion of the microstructure occasioned by the development of incoherent complex compounds which weaken the pearlite reinforcing phase. It is concluded that the presence of copper above 0.22 wt. % is deleterious to construction steel performance.

Keywords: Construction steel, mechanical properties, processing method, trace elements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5611
139 Mechanisms of Organic Contaminants Uptake and Degradation in Plants

Authors: E.Kvesitadze, T.Sadunishvili, G.Kvesitadze

Abstract:

As a result of urbanization, the unpredictable growth of industry and transport, production of chemicals, military activities, etc. the concentration of anthropogenic toxicants spread in nature exceeds all the permissible standards. Most dangerous among these contaminants are organic compounds having great persistence, bioaccumulation, and toxicity along with our awareness of their prominent occurrence in the environment and food chain. Among natural ecological tools, plants still occupying above 40% of the world land, until recently, were considered as organisms having only a limited ecological potential, accumulating in plant biomass and partially volatilizing contaminants of different structure. However, analysis of experimental data of the last two decades revealed the essential role of plants in environment remediation due to ability to carry out intracellular degradation processes leading to partial or complete decomposition of carbon skeleton of different structure contaminants. Though, phytoremediation technologies still are in research and development, their various applications have been successfully used. The paper aims to analyze mechanisms of organic contaminants uptake and detoxification in plants, being the less studied issue in evaluation and exploration of plants potential for environment remediation.

Keywords: organic contaminants, Detoxification, metalloenzymes, plant ultrastructure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3002
138 Intelligent Assistive Methods for Diagnosis of Rheumatoid Arthritis Using Histogram Smoothing and Feature Extraction of Bone Images

Authors: SP. Chokkalingam, K. Komathy

Abstract:

Advances in the field of image processing envision a new era of evaluation techniques and application of procedures in various different fields. One such field being considered is the biomedical field for prognosis as well as diagnosis of diseases. This plethora of methods though provides a wide range of options to select from, it also proves confusion in selecting the apt process and also in finding which one is more suitable. Our objective is to use a series of techniques on bone scans, so as to detect the occurrence of rheumatoid arthritis (RA) as accurately as possible. Amongst other techniques existing in the field our proposed system tends to be more effective as it depends on new methodologies that have been proved to be better and more consistent than others. Computer aided diagnosis will provide more accurate and infallible rate of consistency that will help to improve the efficiency of the system. The image first undergoes histogram smoothing and specification, morphing operation, boundary detection by edge following algorithm and finally image subtraction to determine the presence of rheumatoid arthritis in a more efficient and effective way. Using preprocessing noises are removed from images and using segmentation, region of interest is found and Histogram smoothing is applied for a specific portion of the images. Gray level co-occurrence matrix (GLCM) features like Mean, Median, Energy, Correlation, Bone Mineral Density (BMD) and etc. After finding all the features it stores in the database. This dataset is trained with inflamed and noninflamed values and with the help of neural network all the new images are checked properly for their status and Rough set is implemented for further reduction.

Keywords: Computer Aided Diagnosis, Edge Detection, Histogram Smoothing, Rheumatoid Arthritis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2432
137 Fabrication and Characterization of CdS Nanoparticles Annealed by using Different Radiations

Authors: Aneeqa Sabah, Saadat Anwar Siddiqi, Salamat Ali

Abstract:

The systematic manipulations of shapes and sizes of inorganic compounds greatly benefit the various application fields including optics, magnetic, electronics, catalysis and medicine. However shape control has been much more difficult to achieve. Hence exploration of novel method for the preparation of differently shaped nanoparticles is challenging research area. II-VI group of semiconductor cadmium sulphide (CdS) nanostructure with different morphologies (such as, acicular like, mesoporous, spherical shapes) and of crystallite sizes vary from 11 to 16 nm were successfully synthesized by chemical aqueous precipitation of Cd2+ ions with homogeneously released S2- ions from decomposition of cadmium sulphate (CdSO4) and thioacetamide (CH3CSNH2) by annealing at different radiations (microwave, ultrasonic and sunlight) with matter and systematic research has been done for various factors affecting the controlled growth rate of CdS nanoparticles. The obtained nanomaterials have been characterized by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Thermogravometric (DSC-TGA) analysis and Scanning Electron Microscopy (SEM). The result indicates that on increasing the reaction time particle size increases but on increasing the molar ratios grain size decreases.

Keywords: CdS nanoparticles, Morphology, Oxidation, Radiations

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2926
136 Comparison of Indoor and Outdoor Air Quality in Children Homes at Prenatal Period and One Year Old

Authors: S. Lakestani, B. Karakas, S. Acar Vaizoglu, B. Guciz Dogan, C. Guler, B. Sekerel, A. Taner, G. Gullu

Abstract:

Abstract–Indoor air (VOCs) samples were collected simultaneously from variety of indoors (e.g. living rooms, baby-s rooms) and outdoor environments which were voluntarily selected from the houses in which pregnant residents live throughout Ankara. This is the first comprehensive study done in Turkey starting from prenatal period and continued till the babies had one year old. VOCs levels were measured over 76 homes. Air samples were collected in Tenax TA sorbent filled tubes with active sampling method and analyzed with Thermal Desorber and Gas Chromatography/Mass spectrometry (TD-GC/MS). At the first sampling period in the baby-s rooms maximum concentration of toluene was measured about 240.77μg.m-3 and in the living rooms maximum concentration of naphthalene was 180.24μg.m-3. At the second sampling period in the baby-s rooms maximum concentration of toluene was measured about 144.97μg.m-3 and in the living rooms maximum concentration of naphthalene was 247.89μg.m-3. Concentration of TVOCs in the first period was generally higher than the second period.

Keywords: Indoor Air, Volatile Organic Compounds (VOCs), Gas Chromatography

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1962
135 Prediction of Product Size Distribution of a Vertical Stirred Mill Based on Breakage Kinetics

Authors: C. R. Danielle, S. Erik, T. Patrick, M. Hugh

Abstract:

In the last decade there has been an increase in demand for fine grinding due to the depletion of coarse-grained orebodies and an increase of processing fine disseminated minerals and complex orebodies. These ores have provided new challenges in concentrator design because fine and ultra-fine grinding is required to achieve acceptable recovery rates. Therefore, the correct design of a grinding circuit is important for minimizing unit costs and increasing product quality. The use of ball mills for grinding in fine size ranges is inefficient and, therefore, vertical stirred grinding mills are becoming increasingly popular in the mineral processing industry due to its already known high energy efficiency. This work presents a hypothesis of a methodology to predict the product size distribution of a vertical stirred mill using a Bond ball mill. The Population Balance Model (PBM) was used to empirically analyze the performance of a vertical mill and a Bond ball mill. The breakage parameters obtained for both grinding mills are compared to determine the possibility of predicting the product size distribution of a vertical mill based on the results obtained from the Bond ball mill. The biggest advantage of this methodology is that most of the minerals processing laboratories already have a Bond ball mill to perform the tests suggested in this study. Preliminary results show the possibility of predicting the performance of a laboratory vertical stirred mill using a Bond ball mill.

Keywords: Bond ball mill, population balance model, product size distribution, vertical stirred mill.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1112
134 Prooxidant Effect of the Crude Ethanolic Leaf Extract of Ficus odorata Blanco Merr. in vitro: It’s Medical Significance

Authors: Librado A. Santiago, Anna Beatriz R. Mayor

Abstract:

Alongside with antioxidant, pro-oxidant activity is also observed in phytochemical compounds. In the study, Ficus odorata, an endemic medicinal plant in the Philippines, was screened for the potential medical application of its pro-oxidant activity.

Phytochemical screening revealed the presence of terpenes, glycosides and phenolic acids. The crude extract was found to contain low gallic acid and quercetin equivalence. The TLC chromatogram of the crude extract showed that none of the 11 spots obtained has antioxidant activity nor correspond to gallic acid and quercetin standards. Experiments showed that the crude extract has stimulatory activity towards DPPH radicals, hydrogen peroxide, hydroxyl radicals, superoxide anions and nitric oxide. Moreover, the extract exhibited a low ferric reducing power.

The prooxidant activity was evident in the crude ethanolic leaf extract of F. odorata, which may provide a better understanding of the plant’s pharmacological importance in the prevention of diseases.

Keywords: Ficus odorata Blanco, Free Radicals, Oxidative Stress, Prooxidant, Antioxidant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3948
133 Investigation of the Operational Principle and Flow Analysis of a Newly Developed Dry Separator

Authors: Sung Uk Park, Young Su Kang, Sangmo Kang, Yong Kweon Suh

Abstract:

Mineral product, waste concrete (fine aggregates), waste in the optical field, industry, and construction employ separators to separate solids and classify them according to their size. Various sorting machines are used in the industrial field such as those operating under electrical properties, centrifugal force, wind power, vibration, and magnetic force. Study on separators has been carried out to contribute to the environmental industry. In this study, we perform CFD analysis for understanding the basic mechanism of the separation of waste concrete (fine aggregate) particles from air with a machine built with a rotor with blades. In CFD, we first performed two-dimensional particle tracking for various particle sizes for the model with 1 degree, 1.5 degree, and 2 degree angle between each blade to verify the boundary conditions and the method of rotating domain method to be used in 3D. Then we developed 3D numerical model with ANSYS CFX to calculate the air flow and track the particles. We judged the capability of particle separation for given size by counting the number of particles escaping from the domain toward the exit among 10 particles issued at the inlet. We confirm that particles experience stagnant behavior near the exit of the rotating blades where the centrifugal force acting on the particles is in balance with the air drag force. It was also found that the minimum particle size that can be separated by the machine with the rotor is determined by its capability to stay at the outlet of the rotor channels.

Keywords: Environmental industry, Separator, CFD, Fine aggregate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1763
132 Autohydrolysis Treatment of Olive Cake to Extract Fructose and Sucrose

Authors: G. Blázquez, A. Gálvez-Pérez, M. Calero, I. Iáñez-Rodríguez, M. A. Martín-Lara, A. Pérez

Abstract:

The production of olive oil is considered as one of the most important agri-food industries. However, some of the by-products generated in the process are potential pollutants and cause environmental problems. Consequently, the management of these by-products is currently considered as a challenge for the olive oil industry. In this context, several technologies have been developed and tested. In this sense, the autohydrolysis of these by-products could be considered as a promising technique. Therefore, this study focused on autohydrolysis treatments of a solid residue from the olive oil industry denominated olive cake. This one comes from the olive pomace extraction with hexane. Firstly, a water washing was carried out to eliminate the water soluble compounds. Then, an experimental design was developed for the autohydrolysis experiments carried out in the hydrothermal pressure reactor. The studied variables were temperature (30, 60 and 90 ºC) and time (30, 60, 90 min). On the other hand, aliquots of liquid obtained fractions were analysed by HPLC to determine the fructose and sucrose contents present in the liquid fraction. Finally, the obtained results of sugars contents and the yields of the different experiments were fitted to a neuro-fuzzy and to a polynomial model.

Keywords: ANFIS, olive cake, polyols, saccharides.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 609
131 Sludge and Compost Amendments in Tropical Soils: Impact on Coriander (Coriandrum sativum) Nutrient Content

Authors: Ml. López-Moreno, Le. Lugo Avilés, Fr. Román, J. Lugo Rosas, Ja. Hernández-Viezcas, Jr. Peralta-Videa, Jl. Gardea-Torresdey

Abstract:

Degradation of agricultural soils has increased rapidly during the last 20 years due to the indiscriminate use of pesticides and other anthropogenic activities. Currently, there is an urgent need of soil restoration to increase agricultural production. Utilization of sewage sludge or municipal solid waste is an important way to recycle nutrient elements and improve soil quality. With these amendments, nutrient availability in the aqueous phase might be increased and production of healthier crops can be accomplished. This research project aimed to achieve sustainable management of tropical agricultural soils, specifically in Puerto Rico, through the amendment of water treatment plant sludge’s. This practice avoids landfill disposal of sewage sludge and at the same time results costeffective practice for recycling solid waste residues. Coriander sativum was cultivated in a compost-soil-sludge mixture at different proportions. Results showed that Coriander grown in a mixture of 25% compost+50% Voladora soi+25% sludge had the best growth and development. High chlorophyll content (33.01 ± 0.8) was observed in Coriander plants cultivated in 25% compost+62.5% Coloso soil+ 12.5% sludge compared to plants grown with no sludge (32.59 ± 0.7). ICP-OES analysis showed variations in mineral element contents (macro and micronutrients) in coriander plant grown I soil amended with sludge and compost.

Keywords: Compost, Coriandrum sativum, nutrients, waste sludge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2435
130 Molecular Dynamic Simulation and Receptor-based Pharmacophore Modeling on Human Renin for Discovery of Novel Inhibitors

Authors: Chanin Park, Sundarapandian Thangapandian, Yuno Lee, Minky Son, Shalini John, Young-sik Sohn, Keun Woo Lee

Abstract:

Hypertension is characterized with stress on the heart and blood vessels thus increasing the risk of heart attack and renal diseases. The Renin angiotensin system (RAS) plays a major role in blood pressure control. Renin is the enzyme that controls the RAS at the rate-limiting step. Our aim is to develop new drug-like leads which can inhibit renin and thereby emerge as therapeutics for hypertension. To achieve this, molecular dynamics (MD) simulation and receptor-based pharmacophore modeling were implemented, and three rennin-inhibitor complex structures were selected based on IC50 value and scaffolds of inhibitors. Three pharmacophore models were generated considering conformations induced by inhibitor. The compounds mapped to these models were selected and subjected to drug-like screening. The identified hits were docked into the active site of renin. Finally, hit1 satisfying the binding mode and interaction energy was selected as possible lead candidate to be used in novel renin inhibitors.

Keywords: Renin inhibitor, Molecular dynamics simulation, Structure-based pharmacophore modeling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1931
129 Rehabilitation of Contaminated Surface and Groundwater for Selected Sites in the Illawarra and Sydney Regions Utilising Nanotechnology

Authors: Hamad N. Altalyan, Brian G. Jones, John Bradd

Abstract:

A comprehensive study was conducted to examine the removal of inorganic contaminants that exist in surface and groundwater in the Illawarra and Sydney regions. The ability of multi-walled carbon nanotubes (MWCNT), as a generation of membrane technology, was examined using a dead-end filtration cell setup. A set of ten compounds were examined in this study that represent the significant inorganic cations and anions commonly found in contaminated surface and groundwater. The performance of MWCNT buckypaper membranes in excluding anions was found to be better than that of its cation exclusion. This phenomenon can be attributed to the Donnan exclusion mechanism (charge repulsion mechanism). Furthermore, the results revealed that phosphate recorded the highest exclusion value reaching 69.2%, whereas the lowest rejection value was for potassium where no removal occurred (0%). The reason for this is that the molecular weight of phosphate (95.0 g/mol) is greater than the molecular weight of potassium (39.10 g/mol).

Keywords: Nanotechnology, buckypaper, carbon nanotube, CNT, multi-walled carbon nanotube, MWCNT, Botany Bay, Russell Vale.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 538
128 Computer Aided X-Ray Diffraction Intensity Analysis for Spinels: Hands-On Computing Experience

Authors: Ashish R. Tanna, Hiren H. Joshi

Abstract:

The mineral having chemical compositional formula MgAl2O4 is called “spinel". The ferrites crystallize in spinel structure are known as spinel-ferrites or ferro-spinels. The spinel structure has a fcc cage of oxygen ions and the metallic cations are distributed among tetrahedral (A) and octahedral (B) interstitial voids (sites). The X-ray diffraction (XRD) intensity of each Bragg plane is sensitive to the distribution of cations in the interstitial voids of the spinel lattice. This leads to the method of determination of distribution of cations in the spinel oxides through XRD intensity analysis. The computer program for XRD intensity analysis has been developed in C language and also tested for the real experimental situation by synthesizing the spinel ferrite materials Mg0.6Zn0.4AlxFe2- xO4 and characterized them by X-ray diffractometry. The compositions of Mg0.6Zn0.4AlxFe2-xO4(x = 0.0 to 0.6) ferrites have been prepared by ceramic method and powder X-ray diffraction patterns were recorded. Thus, the authenticity of the program is checked by comparing the theoretically calculated data using computer simulation with the experimental ones. Further, the deduced cation distributions were used to fit the magnetization data using Localized canting of spins approach to explain the “recovery" of collinear spin structure due to Al3+ - substitution in Mg-Zn ferrites which is the case if A-site magnetic dilution and non-collinear spin structure. Since the distribution of cations in the spinel ferrites plays a very important role with regard to their electrical and magnetic properties, it is essential to determine the cation distribution in spinel lattice.

Keywords: Spinel ferrites, Localized canting of spins, X-ray diffraction, Programming in Borland C.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3738
127 Study of the Antimicrobial Activity of Aminoreductone against Pathogenic Bacteria in Comparison with Other Antibiotics

Authors: Vu Thu Trang, Lam Xuan Thanh, Samira Sarter, Tomoko Shimamura, Hiroaki Takeuchi 

Abstract:

Antimicrobial activities of aminoreductone (AR), a product formed in the initial stage of Maillard reaction, were screened against pathogenic bacteria. A significant growth inhibition of AR against all 7 isolates (Staphylococcus aureus ATCC® 25923™, Salmonella typhimurium ATCC® 14028™, Bacillus cereus ATCC® 13061™, Bacillus subtilis ATCC® 11774™, Escherichia coli ATCC® 25922™, Enterococcus faecalis ATCC® 29212™, Listeria innocua ATCC® 33090™) were observed by the standard disc diffusion methods. The inhibition zone for each isolate by AR (2.5 mg) ranged from 15±0mm to 28.3±0.4mm in diameter. The minimum inhibitory concentration (MIC) of AR ranging from 20mM to 26mM was proven in the 7 isolates tested. AR also showed the similar effect of growth inhibition in comparison with antibiotics frequently used for the treatment of infections bacteria, such as amikacin, ciprofloxacin, meropennem and levofloxacin. The results indicated that foods containing AR are valuable sources of bioactive compounds towards pathogenic bacteria.

Keywords: Pathogenic bacteria, aminoreductone, Maillard reaction, antimicrobial activity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2260
126 Influence of Electrolytes and High Viscosity on Liquid-Liquid Separation

Authors: K. Anusarn, P. Chuttrakul, M. Schmidt, T. Kangsadan, A. Pfennig

Abstract:

Liquid-liquid extraction is a process using two immiscible liquids to extract compounds from one phase without high temperature requirement. Mostly, the technical implementation of this process is carried out in mixer-settlers or extraction columns. In real chemical processes, chemicals may have high viscosity and contain impurities. These impurities may change the settling behavior of the process without measurably changing the physical properties of the phases. In the current study, the settling behavior and the affected parameters in a high-viscosity system were observed. Batchsettling experiments were performed to experimentally quantify the settling behavior and the mixer-settler model of Henschke [1] was used to evaluate the behavior of the toluene + water system. The viscosity of the system was increased by adding polyethylene glycol 4000 to the aqueous phase. NaCl and Na2SO4 were used to study the influence of electrolytes. The results from this study show that increasing the viscosity of water has a higher influence on the settling behavior in comparison to the effects of the electrolytes. It can be seen from the experiments that at high salt concentrations, there was no effect on the settling behavior.

Keywords: Coalescence; electrolytes; liquid-liquid separation; high viscosity; mixer- settler.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2169
125 Surfactant Stabilized Nanoemulsion: Characterization and Application in Enhanced Oil Recovery

Authors: Ajay Mandal, Achinta Bera

Abstract:

Nanoemulsions are a class of emulsions with a droplet size in the range of 50–500 nm and have attracted a great deal of attention in recent years because it is unique characteristics. The physicochemical properties of nanoemulsion suggests that it can be successfully used to recover the residual oil which is trapped in the fine pore of reservoir rock by capillary forces after primary and secondary recovery. Oil-in-water nanoemulsion which can be formed by high-energy emulsification techniques using specific surfactants can reduce oil-water interfacial tension (IFT) by 3-4 orders of magnitude. The present work is aimed on characterization of oil-inwater nanoemulsion in terms of its phase behavior, morphological studies; interfacial energy; ability to reduce the interfacial tension and understanding the mechanisms of mobilization and displacement of entrapped oil blobs by lowering interfacial tension both at the macroscopic and microscopic level. In order to investigate the efficiency of oil-water nanoemulsion in enhanced oil recovery (EOR), experiments were performed to characterize the emulsion in terms of their physicochemical properties and size distribution of the dispersed oil droplet in water phase. Synthetic mineral oil and a series of surfactants were used to prepare oil-in-water emulsions. Characterization of emulsion shows that it follows pseudo-plastic behaviour and drop size of dispersed oil phase follows lognormal distribution. Flooding experiments were also carried out in a sandpack system to evaluate the effectiveness of the nanoemulsion as displacing fluid for enhanced oil recovery. Substantial additional recoveries (more than 25% of original oil in place) over conventional water flooding were obtained in the present investigation.

Keywords: Nanoemulsion, Characterization, Enhanced Oil Recovery, Particle Size Distribution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4969
124 Novel NMR-Technology to Assess Food Quality and Safety

Authors: Markus Link, Manfred Spraul, Hartmut Schaefer, Fang Fang, Birk Schuetz

Abstract:

High Resolution NMR Spectroscopy offers unique screening capabilities for food quality and safety by combining non-targeted and targeted screening in one analysis.

The objective is to demonstrate, that due to its extreme reproducibility NMR can detect smallest changes in concentrations of many components in a mixture, which is best monitored by statistical evaluation however also delivers reliable quantification results.

The methodology typically uses a 400 MHz high resolution instrument under full automation after minimized sample preparation.

For example one fruit juice analysis in a push button operation takes at maximum 15 minutes and delivers a multitude of results, which are automatically summarized in a PDF report.

The method has been proven on fruit juices, where so far unknown frauds could be detected. In addition conventional targeted parameters are obtained in the same analysis. This technology has the advantage that NMR is completely quantitative and concentration calibration only has to be done once for all compounds. Since NMR is so reproducible, it is also transferable between different instruments (with same field strength) and laboratories. Based on strict SOP`s, statistical models developed once can be used on multiple instruments and strategies for compound identification and quantification are applicable as well across labs.

Keywords: Automated solution, NMR, non-targeted screening, targeted screening.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2207
123 Characterization and Detection of Cadmium Ion Using Modification Calixarene with Multiwalled Carbon Nanotubes

Authors: Amira Shakila Razali, Faridah Lisa Supian, Muhammad Mat Salleh, Suraini Abu Bakar

Abstract:

Water contamination by toxic compound is one of the serious environmental problems today. These toxic compounds mostly originated from industrial effluents, agriculture, natural sources and human waste. These studies focus on modification of multiwalled carbon nanotube (MWCNTs) with nanoparticle of calixarene and explore the possibility of using this modification for the remediation of cadmium in water. The nanocomposites were prepared by dissolving calixarene in chloroform solution as solvent, followed by additional multiwalled carbon nanotube (MWCNTs) then sonication process for 3 hour and fabricated the nanocomposites on substrate by spin coating method. Finally, the nanocomposites were tested on cadmium ion (10 mg/ml). The morphology of nanocomposites was investigated by FESEM showing the formation of calixarene on the outer walls of carbon nanotube and cadmium ion also clearly seen from the micrograph. This formation was supported by using energy dispersive x-ray (EDX). The presence of cadmium ions in the films, leads to some changes in the surface potential and Fourier Transform Infrared spectroscopy (FTIR).The nanocomposites MWCNTs-calixarene have potential for development of sensor for pollutant monitoring and nanoelectronics devices applications.

Keywords: Calixarene, Multiwalled Carbon Nanotubes, Cadmium, Surface Potential.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2775