%0 Journal Article
	%A SP. Chokkalingam and  K. Komathy
	%D 2014
	%J International Journal of Computer and Information Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 89, 2014
	%T Intelligent Assistive Methods for Diagnosis of Rheumatoid Arthritis Using Histogram Smoothing and Feature Extraction of Bone Images
	%U https://publications.waset.org/pdf/9999076
	%V 89
	%X Advances in the field of image processing envision a
new era of evaluation techniques and application of procedures in
various different fields. One such field being considered is the
biomedical field for prognosis as well as diagnosis of diseases. This
plethora of methods though provides a wide range of options to select
from, it also proves confusion in selecting the apt process and also in
finding which one is more suitable. Our objective is to use a series of
techniques on bone scans, so as to detect the occurrence of
rheumatoid arthritis (RA) as accurately as possible. Amongst other
techniques existing in the field our proposed system tends to be more
effective as it depends on new methodologies that have been proved
to be better and more consistent than others. Computer aided
diagnosis will provide more accurate and infallible rate of
consistency that will help to improve the efficiency of the system.
The image first undergoes histogram smoothing and specification,
morphing operation, boundary detection by edge following algorithm
and finally image subtraction to determine the presence of
rheumatoid arthritis in a more efficient and effective way. Using preprocessing
noises are removed from images and using segmentation,
region of interest is found and Histogram smoothing is applied for a
specific portion of the images. Gray level co-occurrence matrix
(GLCM) features like Mean, Median, Energy, Correlation, Bone
Mineral Density (BMD) and etc. After finding all the features it
stores in the database. This dataset is trained with inflamed and noninflamed
values and with the help of neural network all the new
images are checked properly for their status and Rough set is
implemented for further reduction.

	%P 905 - 914