Effect of Chloroform on Aerobic Biodegradation of Organic Solvents in Pharmaceutical Wastewater
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Effect of Chloroform on Aerobic Biodegradation of Organic Solvents in Pharmaceutical Wastewater

Authors: Balasubramanian P, Ligy Philip, S. Murty Bhallamudi

Abstract:

In this study, cometabolic biodegradation of chloroform was experimented with mixed cultures in the presence of various organic solvents like methanol, ethanol, isopropanol, acetone, acetonitrile and toluene as these are predominant discharges in pharmaceutical industries. Toluene and acetone showed higher specific chloroform degradation rate when compared to other compounds. Cometabolic degradation of chloroform was further confirmed by observation of free chloride ions in the medium. An extended Haldane model, incorporating the inhibition due to chloroform and the competitive inhibition between primary substrates, was developed to predict the biodegradation of primary substrates, cometabolic degradation of chloroform and the biomass growth. The proposed model is based on the use of biokinetic parameters obtained from single substrate degradation studies. The model was able to satisfactorily predict the experimental results of ternary and quaternary mixtures. The proposed model can be used for predicting the performance of bioreactors treating discharges from pharmaceutical industries.

Keywords: Chloroform, Cometabolic biodegradation, Competitive inhibition, Extended Haldane model, Pharmaceuticalindustry.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1070369

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2793

References:


[1] B.C. Inanc, K. Alp, F. Ciner, B. Mertoglu, I. Ozturk, "Toxicity assessment on combined biological treatment of pharmaceutical industrial effluents", Water Sci. Technol. vol. 45, pp.135-142, 2002.
[2] A.M. Enright, S. McHugh, G. Collins, V.O. Flaherty, "Low-temperature anaerobic biological treatment of solvent containing pharmaceutical wastewater", Water Res. vol. 39, pp. 4587-4596, 2005.
[3] D.J.C. Constable, C.J. Gonzalez, R.K. Henderson, "Perspective on solvent use in the pharmaceutical industry", Org Process Res. Dev. vol.11, pp. 133-137, 2007.
[4] M.H.A. van Eekert, A.J.M. Stams, J.A. Field, G. Schraa, "Gratuitous dechlorination of chloroethanes by methanogenic granular sludge", Appl. Microbiol. Biotechnol. vol. 51, pp. 46-52, 1999.
[5] P.J.M. Middeldorp, M.L.G.C. Luijten, B.A. van de Pas, M.H.A. van Eekert, S.W.M. Kengen, G. Schraa, A.J.M. Stams, "Anaerobic microbial reductive dehalogenation of chlorinated ethenes", Biorem. J. vol. 3, pp. 151-169, 1999.
[6] S.W. Zou, H.D. Stensel, J.F. Ferguson, "Carbon tetrachloride degradation: Effect of microbial growth substrate and vitamin B-12 content", Environ. Sci. Technol. vol. 34, pp. 1751-1757, 2000.
[7] B.W. Koons, J.L. Baeseman, P.J. Novak, "Investigation of cell exudates active in carbon tetrachloride and chloroform degradation", Biotechnol. Bioeng. vol. 74, pp. 12-17, 2001.
[8] A.N. Assaf, K.Y. Lin, "Carbon tetrachloride reduction by Fe2+, S2, and FeS with vitamin B-12 as organic amendment", J. Environ. Eng.-ASCE vol. 128, pp. 94-99, 2002.
[9] P.M. Bradley, "History and ecology of chloroethene biodegradation: A review", Biorem. J. vol.7, pp. 81-109, 2003.
[10] G. Chen, "Reductive dehalogenation of tetrachloroethylene by microorganisms: Current knowledge and application strategies", Appl. Microbiol. Biotechnol. vol. 63, pp. 373-377, 2004.
[11] M. Raynal, B. Crimi, A. Pruden, "Enrichment and characterization of MTBE-degrading cultures under iron and sulfate reducing conditions", Can. J. Civ. Eng. vol.37, pp. 522-534, 2010.
[12] Y. Morono, H. Unno, K. Hori, "Correlation of TCE cometabolism with growth characteristics on aromatic substrates in toluene degrading bacteria", Biochem. Eng. J. vol. 31, pp.173-179, 2006.
[13] B.G. Fox, J.G. Borneman, L.P. Wackett, J.D. Lipscomb, "Haloalkene oxidation by the soluble methane monooxygenase from Methylosinus trichosporium OB3b: mechanistic and environmental implications", Biochem. J. vol. 29, pp. 6419-6427, 1990.
[14] D. Ryoo, H. Shim, K. Canada, P. Barbieri, T.K. Wood, "Aerobic degradation of Tetrachloroethylene by toluene-o-xylene monooxygenase of Pseudomonas stutzeri OX1", Nat. Biotechnol. vol.18, pp. 775-778, 2000.
[15] T. Vannelli, M. Logan, D.M. Arciero, A.B. Hopper, "Degradation of halogenated aliphatic compounds by the ammonia oxidizing bacterium Nitrosomonas europaea", Appl. Environ. Microbiol. vol. 56, pp. 1169- 1171, 1990.
[16] M.E. Rasche, M.R. Hyman, D.J. Arp, "Factors limiting aliphatic chlorocarbon degradation by Nitrosomonas europaea cometabolic inactivation of ammonia monooxygenase and substrate specificity", Appl. Environ. Microbiol. vol. 57, pp. 2986-2994, 1991.
[17] K. Mcclay, B.G. Fox, R.J. Steffan, "Chloroform mineralization by toluene oxidizing bacteria", Appl. Environ. Microbiol. vol. 62, pp. 2716- 2722, 1996.
[18] H.L. Chang, L. Alvarez-Cohen, "Biodegradation of individual and multiple chlorinated aliphatic hydrocarbons by methane oxidizing cultures", Appl. Environ. Microbiol. vol. 62, pp. 3371-3377, 1996.
[19] R.L. Ely, K.J. Williamson, M.R. Hyman, D.J. Arp, "Cometabolism of chlorinated solvents by nitrifying bacteria: Kinetics, substrate interactions, toxicity effects and bacterial response", Biotechnol. Bioeng. vol. 54, pp. 520-534, 1997.
[20] N. Hamamura, C. Page, T. Long, L. Semprini, D.J. Arp, "Chloroform cometabolism by butane grown CF8, Pseudomonas butanovora, Mycobacterium vaccae JOB5 and methane grown Methylosinus trichosporium OB3b", Appl. Environ. Microbiol. vol. 63, pp. 3607- 3613, 1997.
[21] C.E. Aziz, G. Georgiu, G.E. Speitel Jr., "Cometabolism of chlorinated solvents and binary chlorinated solvent mixtures using M. trichosporium OB3b PP358", Biotech. Bioeng. vol. 65, pp. 100-107, 1999.
[22] D. Frascari, A. Zannoni, S. Fedi, Y. Pii, D. Zannoni, D. Pinelli, M. Nocentini, "Aerobic cometabolism of chloroform by butane grown microorganisms: Long term monitoring of depletion rates and isolation of a high performing strain", Biodegradation. vol. 16, pp. 147-158, 2005.
[23] L. Alvarez-Cohen, P.L. McCarty, "Product toxicity and cometabolic competitive inhibition modeling of chloroform and trichloroethylene transformation by methanotrophic resting cells". Appl. Environ. Microbiol. vol. 57, pp. 1031-1037, 1991.
[24] E.W. Bartnicki, C.E. Castro, "Biodehalogenation - Rapid oxidative metabolism of monohalomethanes and polyhalomethanes by Methylosinus trichosporium OB3b", Environ. Toxicol. Chem. vol. 13, pp. 241-245, 1994.
[25] D.J. Jahng, T.K. Wood, "Trichloroethylene and chloroform degradation by a Methylosinus trichosporium OB3b", Appl. Environ. Microbiol. vol. 60, pp. 2473-2482, 1994.
[26] J.B. Rogers, N.M. DuTeau, K.F. Reardon, "Use of 16S-rRNA to investigate microbial population dynamics during biodegradation of toluene and phenol by a binary culture", Biotechnol. Bioeng. vol. 70, pp. 436-445, 2000.
[27] A. Bielefeldt, H.D. Stensel, "Modeling competitive inhibition effects during biodegradation of BTEX mixtures", Water Res. vol. 33, pp. 707- 714, 1999.
[28] X.H. Zhang, R.K. Bajpai, "A comprehensive model for the cometabolism of chlorinated solvents", J. Environ. Sci. Health. Part A. vol. 35, pp. 229-244, 2000.
[29] B.W. Brandt, I.M.M. van Leeuwen, S.A.L.M. Kooijman, "A general model for multiple substrate biodegradation. Application to cometabolism of structurally non-analogous compounds", Water Res. vol. 37, pp. 4843-4854, 2003.
[30] J.P. Dikshit, A.K. Suresh, K.V. Venkatesh, "An optimal model for representing the kinetics of growth and product formation by Lactobacillus rhamnosus on multiple substrates", J. Biosci. Bioeng. vol. 96, pp. 481-486, 2003.
[31] L.A. Cohen, G.E. Speitel, "Kinetics of aerobic cometabolism of chlorinated solvents", Biodegradation. vol. 12, pp. 105-126, 2001.
[32] J.A. Field, R.S. Alvarez, "Biodegradability of chlorinated solvents and related chlorinated aliphatic compounds", Rev. Environ. Sci. Biotechnol. vol. 3, pp. 185-254, 2004.
[33] J. Kim, W.B. Lee, "The development of a prediction model for the kinetic constant of chlorinated aliphatic hydrocarbons", Environ. Model. Assess. vol. 14, pp. 93-100, 2009.
[34] M.R. Atlas, "Handbook of Media for environmental microbiology", Second edition, CRC Press, 1995.
[35] K. Ramakrishna, L. Philip, "Biodegradation of mixed pesticides by mixed pesticide enriched cultures". J. Environ. Sci. Health., Part B. vol. 44, pp. 18-30, 2009.
[36] J.F. Haldane (Andrews), "A mathematical model for the continuous culture of microorganisms utilizing inhibitory substance". Biotechnol. Bioeng. vol. 10, 707-723, 1968.
[37] P. Balasubramanian, L. Philip, B.S. Murty, "Biodegradation of chlorinated and non-chlorinated VOCs from pharmaceutical industries", Appl. Biochem. Biotechnol. vol. 163, 497-518, 2010.
[38] S. Guha, C. Peters, P. Jaffe, "Multisubstrate biodegradation kinetics of naphthalene, phenanthrene, and pyrene mixtures". Biotechnol. Bioeng. vol. 65, pp. 491-499, 1999.
[39] C.D. Knightes, C.A. Peters, Multisubstrate biodegradation kinetics for binary and complex mixtures of polycyclic aromatic hydrocarbons. Environ. Toxicol. Chem. vol. 25, pp. 1746-1756, 2006.