Rehabilitation of Contaminated Surface and Groundwater for Selected Sites in the Illawarra and Sydney Regions Utilising Nanotechnology
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33156
Rehabilitation of Contaminated Surface and Groundwater for Selected Sites in the Illawarra and Sydney Regions Utilising Nanotechnology

Authors: Hamad N. Altalyan, Brian G. Jones, John Bradd

Abstract:

A comprehensive study was conducted to examine the removal of inorganic contaminants that exist in surface and groundwater in the Illawarra and Sydney regions. The ability of multi-walled carbon nanotubes (MWCNT), as a generation of membrane technology, was examined using a dead-end filtration cell setup. A set of ten compounds were examined in this study that represent the significant inorganic cations and anions commonly found in contaminated surface and groundwater. The performance of MWCNT buckypaper membranes in excluding anions was found to be better than that of its cation exclusion. This phenomenon can be attributed to the Donnan exclusion mechanism (charge repulsion mechanism). Furthermore, the results revealed that phosphate recorded the highest exclusion value reaching 69.2%, whereas the lowest rejection value was for potassium where no removal occurred (0%). The reason for this is that the molecular weight of phosphate (95.0 g/mol) is greater than the molecular weight of potassium (39.10 g/mol).

Keywords: Nanotechnology, buckypaper, carbon nanotube, CNT, multi-walled carbon nanotube, MWCNT, Botany Bay, Russell Vale.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 671

References:

REFERENCES
[1] Vatanpour, V., Madaeni, S.S., Moradian, R., Zinadini, S., Astinchap, B., Fabrication and characterization of novel antifouling nanofiltration membrane prepared from oxidized multiwalled carbon nanotube/polyethersulfone nanocomposite. Journal of Membrane Science, 2011. 375(1–2), 284-294, doi:10.1016/j.memsci.2011.03.055.
[2] Asha, P.T., Nanotechnology for sustainable water treatment – a review. Materials Today: Proceedings, 2021, 1-6, doi:10.1016/j.matpr.2021.05.629.
[3] Ojemaye, M.O., Adefisoye, M.A., Okoh, A.I., Nanotechnology as a viable alternative for the removal of antimicrobial resistance determinants from discharged municipal effluents and associated watersheds: a review. Journal of Environmental Management, 2020, 275, 111234, 1-17, doi:10.1016/j.jenvman.2020.111234.
[4] Goh, P.S., Ismail, A.F., Ng, B.C., Carbon nanotubes for desalination: Performance evaluation and current hurdles. Desalination, 2013, 308, 2-14, doi:10.1016/j.desal.2012.07.040.
[5] Dumée, L.F., Sears, K., Schutz, J., Finn, N., Huynh, C., Hawkins, S., Duke, M., Gray, S., Characterization and evaluation of carbon nanotube Bucky-Paper membranes for direct contact membrane distillation. Journal of Membrane Science, 2010. 351, (1–2), 36-43, doi:10.1016/j.memsci.2010.01.025.
[6] Yogita, B., Pandey, G., Bhoj, A., Tharmavaram, M., Rawtani, D., Recent advancements in practices related to desalination by means of nanotechnology. Chemical Physics Impact, 2021, 100025, 1-18, doi:10.1016/j.chphi.2021.100025.
[7] Dumée, L.,Germain, V., Sears, K., Schutz, J., Finn, N., Duke, M., Cerneaux, S., Cornu, D., Gray, S., Enhanced durability and hydrophobicity of carbon nanotube bucky paper membranes in membrane distillation. Journal of Membrane Science, 2011, 376(1–2), 241-246, doi:10.1016/j.memsci.2011.04.024.
[8] Rathi, B.S., Kumar, P.S., Application of adsorption process for effective removal of emerging contaminants from water and wastewater. Environmental Pollution, 2021, 280, 116995, doi:10.1016/j.envpol.2021.116995.
[9] Yaroshchuk, A.E., Non-steric mechanisms of nanofiltration: superposition of Donnan and dielectric exclusion. Separation and Purification Technology, 2001, 22–23, 143–158. doi:10.1016/S1383-5866(00)001593.
[10] Teixeira, M.R., Rosa, M.J., Nyström, M., The role of membrane charge on nanofiltration performance. Journal of Membrane Science, 2005, 265(1–2), 160-166, doi:10.1016/j.memsci.2005.04.046.
[11] Verliefde, A.R.D., Cornelissen, E.R., Heijman, S.G.J., Verberk, J.Q.J.C., Amy, G.L., Van der Bruggen, B., Van Dijk, J.C., The role of electrostatic interactions on the rejection of organic solutes in aqueous solutions with nanofiltration. Journal of Membrane Science, 2008, 322(1), 52-66. doi:10.1016/j.memsci.2008.05.022.
[12] Bolong, N., Ismail, A.F., Salim, M.R, Matsuura, T., A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination, 2009, 239(1–3), 229-246. doi:10.1016/j.desal.2008.03.020.
[13] Chen, S.-S., Taylor, J.S., Mulford, L.A., Norris, C.D., Influences of molecular weight, molecular size, flux, and recovery for aromatic pesticide removal by nanofiltration membranes. Desalination, 2004, 160(2), 103-111, doi:10.1016/S0011-9164(04)90000-8.
[14] Liu, X., Wang, M., Zhang, S, Pan, B., Application potential of carbon nanotubes in water treatment: a review. Journal of Environmental Sciences, 2013, 25(7), 1263-1280. doi:10.1016/S1001-0742(12)60161-2.
[15] Li, Y.-H.,Ding, J., Luan, Z, Dia, Z., Zhu, Y., Xu, C., Wu, D., Wei, B., Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon, 2003, 41(14), 2787-2792, doi:10.1016/S0008-6223(03)00392-0.
[16] Dolar, D., Gros, M., Rodriguez-Mozaz, S., Moreno, J., Comas, J., Rodriguez-Roda, I., Barcelo, D., Removal of emerging contaminants from municipal wastewater with an integrated membrane system, MBR–RO. Journal of Hazardous Materials, 2012, 239–240(0), 64-69, doi:10.1016/j.hazmat.2012.03.029.
[17] Loncnar, M., Zupancic, M., Bukovec, P., Justin, M.Z., Fate of saline ions in a planted landfill site with leachate recirculation. Waste Management, 2010, 30(1), 110-118, doi:10.1016/j.wasman.2009.09.010.
[18] Blighe, F.M., Hernandez, Y.R., Blau, W.J., Coleman, J.N., Observation of Percolation-like Scaling-Far from the Percolation Threshold-in High Volume Fraction, High Conductivity Polymer-Nanotube Composite Films. Advanced Materials, 2007, 19, 4443-4447, doi:10.1002/adma.200602912.
[19] Sweetman, L.J., Synthesis, Characterisation and Applications of Carbon Nantube Membrane Containing Macrocycles and Antibiotics, PhD thesis, 2012, University of Wollongong, Wollongong, Australia, 1-188, https://ro.uow.edu.au/theses/3815/.
[20] Frizzell, C., In het Panhuis, M., Coutinho, D., Balkus, K., Minett, A., Blau, W., 2005, Reinforcement of macroscopic carbon nanotube structures by polymer intercalation: the role of polymer molecular weight and chain conformation. Physical Review B, 72, 245420, 1-8.
[21] Richards, L.A., Richards, B.S., Schäfer, A.I., Renewable energy powered membrane technology: Salt and inorganic contaminant removal by nanofiltration/reverse osmosis. Journal of Membrane Science, 2011, 369(1-2), 188-195, doi:10.1016/j.memsci.2010.11.069.
[22] Xu, P., Drewes, J.E., Bellona, C., Amy, G., Kim, T.U., Adam, M., Heberer, T., Rejection of emerging organic micropollutants in nanofiltration-reverse osmosis membrane applications. Water Environment Research, 2005, 77(1), 40-48, doi:10.2175/106143005×41609.
[23] Nightingale, E.R., Phenomenological theory of ion solvation. Effective radii of hydrated ions, Journal of Physical Chemistry, 1959, 63(9), 1381-1387, doi:10.1021/j150579a011.
[24] Volkov, A.G., Paula, S., Deamer, D.W., Two mechanisms of permeation of small neutral molecules and hydrated ions across phospholipid bilayers. Bioelectrochemistry and Bioenergetics, 1997, 42(2), 153-160, doi:10.1016/S0302-4598(96)053097-0.
[25] Haynes, W.M., Bruno, T.J., Lide, D.R., CRC Handbook of Chemistry and Physics, 94th Edition, 2013, CRC Press, Boca Raton, FL, USA.
[26] Kiriukhin, M.Y., Collins, K.D., Dynamic hydration numbers for biologically important ions. Biophysical Chemistry, 2002, 99(2), 155-168, doi:10.1016/S0301-4622(02)001053-9.
[27] Martin, T.D., Brockhoff, C.A., Creed, J.T., EMMC Methods Work Group, Method-200.7, Revision 4.4: Determination of metals and trace elements in water and wastes by inductively coupled plasma atomic emission spectrometry., U.S. EPA1994, Cincinnati, Ohio, USA.
[28] APHA Standard methods for the examination of water and wastewater. 21st Edition ed. 2005, American Public Health Association/American Water Works Association/Water Enveronment Fedration, Washington DC, USA.
[29] U.S. EPA. Metod.7470A (SW-846): Mercury in liquid waste (manual cold-vapor technique), Revision 1. U.S. EPA 1994, Washington DC, USA.
[30] Cottinet, P.J., Souders, C., Tsai, S.Y., Liang, R., Wang, B., Zhang, C., Electromechanical actuation of buckypaper actuator: material properties and performance relationships. Physics Letters A, 2012, 376(12–13), 1132-1136, doi:10.1016/j.physleta.2012.02.011.
[31] Sweetman, L.J., Synthesis, Characterisation and Applications of Carbon Nantube Membrane Containing Macrocycles and Antibiotics, PhD thesis, 2012, University of Wollongong, Wollongong, Australia, 1-188, https://ro.uow.edu.au/theses/3815/.
[32] Van der Bruggen, B., Koninckx, A., Vandecasteele, C., Separation of monovalent and divalent ions from aqueous solution by electrodialysis and nanofiltration. Water Research, 2004, 38(5), 1347-1353, doi:10.1016/j.waters.2003.11.008.
[33] Alshahrania, A.A., Al-Zoubi, H., Neghiem, L.D., in het Panhuis, M., Synthesis and characterisation of MWNT/chitosan and MWNT/chitosancrosslinked buckypaper membranes for desalination. Desalination, 2017, 418, 60-70, doi:10.1016/j.desal.2017.05.031.
[34] Deshpande, B.D., Agrawal, P.S., Yenkie, M.K.N., Dhoble, S.J., Prospective of nanotechnology in degradation of waste water: a new challenges. Nano-Structures & Nano-Objects, 2020. 22, 1-20, doi:10.1016/j.nanoso.2020.100442.
[35] Kwon, B., Park, N., Cho, J., Effect of algae on fouling and efficiency of UF membranes. Desalination, 2005, 179, 203–214, doi:10.1016/j.desal.2004.11.068.
[36] Babel, S., Takizawa, S., Ozaki, H., Factors affecting seasonal variation of membrane filtration resistance caused by Chlorella algae. Water Research, 2002, 36(5), 1193–1202, doi:10.1016/S0043-1354(01)00333-5.
[37] Das, R., Al, M.E., Hamid, S.B.A., Ramakrishna, S., Chowdhury, Z.Z., Carbon nanotube membranes for water purification: a bright future in water desalination. Desalination, 2014, 336, 97-109, doi:10.1016/j.desal.2013.12.026.