Search results for: intrinsic viscosity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 377

Search results for: intrinsic viscosity

377 Carrageenan Properties Extracted From Eucheuma cottonii, Indonesia

Authors: Sperisa Distantina, Wiratni , Moh. Fahrurrozi, Rochmadi

Abstract:

The effect of extraction solvent upon properties of carrageenan from Eucheuma cottonii was studied. The distilled water and KOH solution (concentration 0.1- 0.5N) were used as the solvent. Extraction process was carried out in water bath equipped by stirrer with constant speed of 275 rpm with a constant ratio of seaweed weight to solvent volume ( 1:50 g/mL) at 86oC for 45 minutes. The extract was then precipitated in 3 volume of 90% ethanol, oven dried at 60oC. Based on experimental data, alkali significantly influenced yield and properties of extracted carrageenan. The extracted carrageenan was found to have essentially identical FTIR spectra to the reference samples of kappa-carrageenan. Increasing the KOH concentration led to carrageenan containing less sulfate content and intrinsic viscosity. The gel strength increased along with the increasing of KOH concentration. The decreasing of intrinsic viscosity value indicates that a polymer degradation occurs during alkali extraction.

Keywords: gel strength, sulfate, intrinsic viscosity, Eucheumacottonii

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6057
376 A New Definition of the Intrinsic Mode Function

Authors: Zhihua Yang, Lihua Yang

Abstract:

This paper makes a detailed analysis regarding the definition of the intrinsic mode function and proves that Condition 1 of the intrinsic mode function can really be deduced from Condition 2. Finally, an improved definition of the intrinsic mode function is given.

Keywords: Empirical Mode Decomposition (EMD), Hilbert-Huang transform(HHT), Intrinsic Mode Function(IMF).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3594
375 Experimental and Theoretical Study of Melt Viscosity in Injection Process

Authors: Chung-Chih Lin, Wen-Teng Wang, Chin-Chiuan Kuo, Chieh-Liang Wu

Abstract:

The state of melt viscosity in injection process is significantly influenced by the setting parameters due to that the shear rate of injection process is higher than other processes. How to determine plastic melt viscosity during injection process is important to understand the influence of setting parameters on the melt viscosity. An apparatus named as pressure sensor bushing (PSB) module that is used to evaluate the melt viscosity during injection process is developed in this work. The formulations to coupling melt viscosity with fill time and injection pressure are derived and then the melt viscosity is determined. A test mold is prepared to evaluate the accuracy on viscosity calculations between the PSB module and the conventional approaches. The influence of melt viscosity on the tensile strength of molded part is proposed to study the consistency of injection quality.

Keywords: Injection molding, melt viscosity, injection quality, injection speed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4399
374 Generalized Chaplygin Gas and Varying Bulk Viscosity in Lyra Geometry

Authors: A. K. Sethi, R. N. Patra, B. Nayak

Abstract:

In this paper, we have considered Friedmann-Robertson-Walker (FRW) metric with generalized Chaplygin gas which has viscosity in the context of Lyra geometry. The viscosity is considered in two different ways (i.e. zero viscosity, non-constant r (rho)-dependent bulk viscosity) using constant deceleration parameter which concluded that, for a special case, the viscous generalized Chaplygin gas reduces to modified Chaplygin gas. The represented model indicates on the presence of Chaplygin gas in the Universe. Observational constraints are applied and discussed on the physical and geometrical nature of the Universe.

Keywords: Bulk viscosity, Lyra geometry, generalized Chaplygin gas, cosmology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 799
373 Affect of Viscosity and Droplet Diameter on water-in-oil (w/o) Emulsions: An Experimental Study

Authors: A.N. Ilia Anisa, Abdurahman H.Nour

Abstract:

The influence of viscosity on droplet diameter for water-in-crude oil (w/o) emulsion with two different ratios; 20-80 % and 50-50 % w/o emulsion was examined in the Brookfield Rotational Digital Rheometer. The emulsion was prepared with sorbitan sesquiolate (Span 83) act as emulsifier at varied temperature and stirring speed in rotation per minute (rpm). Results showed that the viscosity of w/o emulsion was strongly augmented by increasing volume of water and decreased the temperature. The changing of viscosity also altered the droplet size distribution. Changing of droplet diameter was depends on the viscosity and the behavior of emulsion either Newtonian or non-Newtonian.

Keywords: Diameter, phase ratio, viscosity, water-in-crude oil(w/o).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7718
372 Prediction of Natural Gas Viscosity using Artificial Neural Network Approach

Authors: E. Nemati Lay, M. Peymani, E. Sanjari

Abstract:

Prediction of viscosity of natural gas is an important parameter in the energy industries such as natural gas storage and transportation. In this study viscosity of different compositions of natural gas is modeled by using an artificial neural network (ANN) based on back-propagation method. A reliable database including more than 3841 experimental data of viscosity for testing and training of ANN is used. The designed neural network can predict the natural gas viscosity using pseudo-reduced pressure and pseudo-reduced temperature with AARD% of 0.221. The accuracy of designed ANN has been compared to other published empirical models. The comparison indicates that the proposed method can provide accurate results.

Keywords: Artificial neural network, Empirical correlation, Natural gas, Viscosity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3246
371 Correlation of Viscosity in Nanofluids using Genetic Algorithm-neural Network (GA-NN)

Authors: Hajir Karimi, Fakheri Yousefi, Mahmood Reza Rahimi

Abstract:

An accurate and proficient artificial neural network (ANN) based genetic algorithm (GA) is developed for predicting of nanofluids viscosity. A genetic algorithm (GA) is used to optimize the neural network parameters for minimizing the error between the predictive viscosity and the experimental one. The experimental viscosity in two nanofluids Al2O3-H2O and CuO-H2O from 278.15 to 343.15 K and volume fraction up to 15% were used from literature. The result of this study reveals that GA-NN model is outperform to the conventional neural nets in predicting the viscosity of nanofluids with mean absolute relative error of 1.22% and 1.77% for Al2O3-H2O and CuO-H2O, respectively. Furthermore, the results of this work have also been compared with others models. The findings of this work demonstrate that the GA-NN model is an effective method for prediction viscosity of nanofluids and have better accuracy and simplicity compared with the others models.

Keywords: genetic algorithm, nanofluids, neural network, viscosity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2085
370 The Relationship between Excreta Viscosity and TMEn in SBM

Authors: Ali Nouri Emamzadeh

Abstract:

The experiment was performed to study the relationship between excreta viscosity and Nitrogen-corrected true metabolisable energy quantities of soybean meals using conventional addition method (CAM) in adult cockerels for 7 d: a 3-d preexperiment and a 4-d experiment period. Results indicated that differences between the excreta viscosity values were (P<0.01) significant for SBMs. The excreta viscosity values were less (P<0.01) for SBMs 6, 2, 8, 1 and 3 than other SBMs. The mean TMEn (kcal/kg) values were significant (P<0.01) between SBMs. The most TMEn values were (P<0.01) for SBMs 6, 2, 8 and 1, also the lowest TMEn values were (P<0.01) for SBMs 3, 7, 4, 9 and 5. There was a reverse linear relationship between the values of excreta viscosity and TMEn in SBMs. In conclusion, there was a reverse linear relationship between the values of excreta viscosity and TMEn in SBMs probably due to their various soluble NSPs.

Keywords: soybean meals (SBMs), Nitrogen-corrected true metabolisable energy (TMEn), viscosity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1657
369 Viscosity of Vegetable Oils and Biodiesel and Energy Generation

Authors: Thiago de O. Macedo, Roberto G. Pereira, Juan M. Pardal, Alexandre S. Soares, Valdir deJ. Lameira

Abstract:

The present work describes an experimental investigation concerning the determination of viscosity behavior with shear rate and temperature of edible oils: canola; sunflower; corn; soybean and the no edible oil: Jatropha curcas. Besides these, it was tested a blend of canola, corn and sunflower oils as well as sunflower and soybean biodiesel. Based on experiments, it was obtained shear stress and viscosity at different shear rates of each sample at 40ºC, as well as viscosity of each sample at various temperatures in the range of 24 to 85ºC. Furthermore, it was compared the curves obtained for the viscosity versus temperature with the curves obtained by modeling the viscosity dependency on temperature using the Vogel equation. Also a test in a stationary engine was performed in order to study the energy generation using blends of soybean oil and soybean biodiesel with diesel.

Keywords: Biofuel, energy generation, vegetable oil, viscosity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9606
368 Tailormade Geometric Properties of Chitosan by Gamma Irradiation

Authors: F. Elashhab, L. Sheha, R. Fawzi Elsupikhe, A. E. A. Youssef, R. M. Sheltami, T. Alfazani

Abstract:

Chitosans, CSs, in solution are increasingly used in a range of geometric properties in various academic and industrial sectors, especially in the domain of pharmaceutical and biomedical engineering. In order to provide a tailoring guide of CSs to the applicants, gamma (γ)-irradiation technology and simple viscosity measurements have been used in this study. Accordingly, CS solid discs (0.5 cm thickness and 2.5 cm diameter) were exposed in air to Cobalt-60 (γ)-radiation, at room temperature and constant 50 kGy dose for different periods of exposer time (tγ). Diluted solutions of native and different irradiated CS were then prepared by dissolving 1.25 mg cm-3 of each polymer in 0.1 M NaCl/0.2 M CH3COOH. The single-concentration relative viscosity (ƞr) measurements were employed to obtain their intrinsic viscosity ([ƞ]) values and interrelated parameters, like: the molar mass (Mƞ), hydrodynamic radiuses (RH,ƞ), radius of gyration (RG,ƞ), and second virial coefficient (A2,ƞ) of CSs in the solution. The results show an exponential decrease of ƞr, [ƞ], Mƞ, RH,ƞ and RG,ƞ with increasing tγ. This suggests the influence of random chain-scission of CSs glycosidic bonds, with rate constant kr and kr-1 (lifetime τr ~ 0.017 min-1 and 57.14 min, respectively). The results also show an exponential decrease of A2ƞ with increasing tγ, which can be attributed to the growth of excluded volume effect in CS segments by tγ and, hence, better solution quality. The results are represented in following scaling laws as a tailoring guide to the applicants: RH,ƞ = 6.98 x 10-3 Mr0.65; RG,ƞ = 7.09 x 10-4 Mr0.83; A2,ƞ = 121.03 Mƞ,r-0.19.

Keywords: Gamma irradiation, geometric properties, kinetic model, scaling laws, viscosity measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 410
367 The Role of Intrinsic Motivation in Explaining Students- Willingness to Use Software Applications

Authors: Anne Sorebo, Oystein Sorebo

Abstract:

The present study was designed to test the influence of intrinsic ICT-motivation, perceived usefulness and ease of use on business students- willingness to use a particular software package. A questionnaire was completed by 196 business students in Norway. We found that 34% of the variance in the students- willingness to use the software could be explained by the three proposed antecedents. Intrinsic ICT-motivation seems to be the most important predictor of students- satisfaction willingness to use the software package.

Keywords: Spreadsheet, business students, technology acceptance, intrinsic motivation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2076
366 Role of Viscosity Ratio in Liquid-Liquid Jets under Radial Electric Field

Authors: Siddharth Gadkari, Rochish Thaokar

Abstract:

The effect of viscosity ratio (λ, defined as viscosity of surrounding medium/viscosity of fluid jet) on stability of axisymmetric (m=0) and asymmetric (m=1) modes of perturbation on a liquid-liquid jet in presence of radial electric field (E0 ), is studied using linear stability analysis. The viscosity ratio is shown to have a damping effect on both the modes of perturbation. However the effect was found more pronounced for the m=1 mode as compared to m=1 mode. Investigating the effect of both E0 and λ simultaneously, an operating diagram is generated, which clearly shows the regions of dominance of the two modes for a range of electric field and viscosity ratio values.

Keywords: liquid-liquid jet, axisymmetric perturbation, asymmetric perturbation, radial electric field

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1843
365 Acoustic Finite Element Analysis of a Slit Model with Consideration of Air Viscosity

Authors: M. Sasajima, M. Watanabe, T. Yamaguchi Y. Kurosawa, Y. Koike

Abstract:

In very narrow pathways, the speed of sound propagation and the phase of sound waves change due to the air viscosity. We have developed a new finite element method (FEM) that includes the effects of air viscosity for modeling a narrow sound pathway. This method is developed as an extension of the existing FEM for porous sound-absorbing materials. The numerical calculation results for several three-dimensional slit models using the proposed FEM are validated against existing calculation methods.

Keywords: Simulation, FEM, air viscosity, slit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1631
364 Intrinsic Kinetics of Methanol Dehydration over Al2O3 Catalyst

Authors: Liang Zhang, Hai-Tao Zhang, W ei-Yong Ying, Ding-Ye Fang

Abstract:

Dehydration of methanol to dimethyl ether (DME) over a commercial Al2O3 catalyst was studied in an isothermal integral fixed bed reactor. The experiments were performed on the temperature interval 513-613 K, liquid hourly space velocity (LHSV) of 0.9-2.1h-1, pressures between 0.1 and 1.0 MPa. The effect of different operation conditions on the dehydration of methanol was investigated in a laboratory scale experiment. A new intrinsic kinetics equation based on the mechanism of Langmuir-Hinshelwood dissociation adsorption was developed for the dehydration reaction by fitting the expressions to the experimental data. An activation energy of 67.21 kJ/mol was obtained for the catalyst with the best performance. Statistic test showed that this new intrinsic kinetics equation was acceptable.

Keywords: catalyst, dimethyl ether, intrinsic kinetics, methanol

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4657
363 Acoustic Analysis with Consideration of Damping Effects of Air Viscosity in Sound Pathway

Authors: M. Sasajima, M. Watanabe, T. Yamaguchi, Y. Kurosawa, Y. Koike

Abstract:

Sound pathways in the enclosures of small earphones are very narrow. In such narrow pathways, the speed of sound propagation and the phase of sound waves change because of the air viscosity. We have developed a new finite element method that includes the effects of damping due to air viscosity for modeling the sound pathway. This method is developed as an extension of the existing finite element method for porous sound-absorbing materials. The numerical calculation results using the proposed finite element method are validated against the existing calculation methods.

Keywords: Simulation, FEM, air viscosity, damping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2198
362 Catalytic Aquathermolysis of Egyptian Heavy Crude Oil

Authors: S. Desouky, A. Al sabagh , M. Betiha, A. Badawi, A. Ghanem, S. Khalil

Abstract:

Two Amphiphilic catalysts, iron (III) dodecylbenzene sulfonate and nickel (II) dodecylbenzene sulfonate, were synthesized and used in the catalytic aquathermolysis of heavy crude oil to reduce its viscosity. The prepared catalysts exhibited good performance in the aquathermolysis and the viscosity is reduced by ~ 78.9 % for Egyptian heavy crude oil. The chemical and physical properties of heavy oil both before and after reaction were investigated by FT-IR, dynamic viscosity, molecular weight and SARA analysis. The results indicated that the content of resin, asphaltene, average molecular weight and sulfur content of heavy oil is reduced after the catalytic aquathermolysis.

Keywords: Amphiphilic catalyst, Aquathermolysis, Heavy oil, Viscosity reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4523
361 CFD Study of the Fluid Viscosity Variation and Effect on the Flow in a Stirred Tank

Authors: Achouri Ryma, Hatem Dhaouadi, Hatem Mhiri, Philippe Bournot

Abstract:

Stirred tanks are widely used in all industrial sectors. The need for further studies of the mixing operation and its different aspects comes from the diversity of agitation tools and implemented geometries in addition to the specific characteristics of each application. Viscous fluids are often encountered in industry and they represent the majority of treated cases, as in the polymer sector, food processing, pharmaceuticals and cosmetics. That's why in this paper, we will present a three-dimensional numerical study using the software Fluent, to study the effect of varying the fluid viscosity in a stirred tank with a Rushton turbine. This viscosity variation was performed by adding carboxymethylcellulose (CMC) to the fluid (water) in the vessel. In this work, we studied first the flow generated in the tank with a Rushton turbine. Second, we studied the effect of the fluid viscosity variation on the thermodynamic quantities defining the flow. For this, three viscosities (0.9% CMC, 1.1% CMC and 1.7% CMC) were considered.

Keywords: CFD, CMC, Mixing, Viscosity, Rushton turbine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3529
360 A Closed Form Solution for Hydrodynamic Pressure of Gravity Dams Reservoir with Effect of Viscosity under Dynamic Loading

Authors: B. Navayineya, J. Vaseghi Amiri, M. Alijani Ardeshir

Abstract:

Hydrodynamic pressures acting on upstream of concrete dams during an earthquake are an important factor in designing and assessing the safety of these structures in Earthquake regions. Due to inherent complexities, assessing exact hydrodynamic pressure is only feasible for problems with simple geometry. In this research, the governing equation of concrete gravity dam reservoirs with effect of fluid viscosity in frequency domain is solved and then compared with that in which viscosity is assumed zero. The results show that viscosity influences the reservoir-s natural frequency. In excitation frequencies near the reservoir's natural frequencies, hydrodynamic pressure has a considerable difference in compare to the results of non-viscose fluid.

Keywords: Closed form solution, concrete dams reservoir, viscosity, dynamic loads, hydrodynamic pressure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2249
359 Comparative Study of Pasting Properties of High Fibre Plantain Based Flour Intended for Diabetic Food (Fufu)

Authors: C. C. Okafor, E. E. Ugwu

Abstract:

A comparative study on the feasibility of producing instant high fibre plantain flour for diabetic fufu by blending soy residence with different plantain (Musa spp) varieties (Horn, false Horn and French), all sieved at 60 mesh, mixed in ratio of 60:40 was analyzed for their passing properties using standard analytical method. Results show that VIIIS60 had the highest peak viscosity (303.75 RVU), Trough value (182.08 RVU), final viscosity (284.50 RVU), and lowest in breakdown viscosity (79.58 RVU), set back value (88.17 RVU), peak time (4.36min), pasting temperature (81.18°C) and differed significantly (p <0.05) from other samples. VIS60 had the lowest in peak viscosity (192.25 RVU), Trough value (112.67 RVU), final viscosity (211.92 RVU), but highest in breakdown viscosity (121.61 RVU), peak time (4.66min) pasting temperature (82.35°C), and differed significantly (p <0.05), from other samples. VIIS60 had the medium peak viscosity (236.67 RVU), Trough value (116.58 RVU), Break down viscosity (120:08 RVU), set back viscosity (167.92 RVU), peak time (4.39min), pasting temp (81.44°C) and differed significantly (p <0.05) from other samples. High final viscosity and low set back values of the French variety with soy residue blended at 60 mesh particle size recommends this french variety and fibre composition as optimum for production of instant plantain soy residue flour blend for production of diabetic fufu. 

Keywords: Plantain, soy residue pasting properties particle size.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2373
358 Influence of Electrolytes and High Viscosity on Liquid-Liquid Separation

Authors: K. Anusarn, P. Chuttrakul, M. Schmidt, T. Kangsadan, A. Pfennig

Abstract:

Liquid-liquid extraction is a process using two immiscible liquids to extract compounds from one phase without high temperature requirement. Mostly, the technical implementation of this process is carried out in mixer-settlers or extraction columns. In real chemical processes, chemicals may have high viscosity and contain impurities. These impurities may change the settling behavior of the process without measurably changing the physical properties of the phases. In the current study, the settling behavior and the affected parameters in a high-viscosity system were observed. Batchsettling experiments were performed to experimentally quantify the settling behavior and the mixer-settler model of Henschke [1] was used to evaluate the behavior of the toluene + water system. The viscosity of the system was increased by adding polyethylene glycol 4000 to the aqueous phase. NaCl and Na2SO4 were used to study the influence of electrolytes. The results from this study show that increasing the viscosity of water has a higher influence on the settling behavior in comparison to the effects of the electrolytes. It can be seen from the experiments that at high salt concentrations, there was no effect on the settling behavior.

Keywords: Coalescence; electrolytes; liquid-liquid separation; high viscosity; mixer- settler.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2224
357 Prediction of Kinematic Viscosity of Binary Mixture of Poly (Ethylene Glycol) in Water using Artificial Neural Networks

Authors: M. Mohagheghian, A. M. Ghaedi, A. Vafaei

Abstract:

An artificial neural network (ANN) model is presented for the prediction of kinematic viscosity of binary mixtures of poly (ethylene glycol) (PEG) in water as a function of temperature, number-average molecular weight and mass fraction. Kinematic viscosities data of aqueous solutions for PEG (0.55419×10-6 – 9.875×10-6 m2/s) were obtained from the literature for a wide range of temperatures (277.15 - 338.15 K), number-average molecular weight (200 -10000), and mass fraction (0.0 – 1.0). A three layer feed-forward artificial neural network was employed. This model predicts the kinematic viscosity with a mean square error (MSE) of 0.281 and the coefficient of determination (R2) of 0.983. The results show that the kinematic viscosity of binary mixture of PEG in water could be successfully predicted using an artificial neural network model.

Keywords: Artificial neural network, kinematic viscosity, poly ethylene glycol (PEG)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2531
356 Determination of Thermophysical Properties of Water Based Magnetic Nanofluids

Authors: Eyüphan Manay, Bayram Sahin, Emre Mandev, Ibrahim Ates, Tuba Yetim

Abstract:

In this study, it was aimed to determine the thermophysical properties of two different magnetic nanofluids (NiFe2O4-water and CoFe2O4-water). Magnetic nanoparticles were dispersed into the pure water at different volume fractions from 0 vol.% to 4 vol.%. The measurements were performed in the temperature range of 15 oC-55 oC. In order to get better idea on the temperature dependent thermophysical properties of magnetic nanofluids (MNFs), viscosity and thermal conductivity measurements were made. SEM images of both NiFe2O4 and CoFe2O4 nanoparticles were used in order to confirm the average dimensions. The measurements showed that the thermal conductivity of MNFs increased with an increase in the volume fraction as well as viscosity. Increase in the temperature of both MNFs resulted in an increase in the thermal conductivity and a decrease in the viscosity. Based on the measured data, the correlations for both the viscosity and the thermal conductivity were presented with respect to solid volume ratio and temperature. Effective thermal conductivity of the prepared MNFs was also calculated. The results indicated that water based NiFe2O4 nanofluid had higher thermal conductivity than that of the CoFe2O4. Once the viscosity values of both MNFs were compared, almost no difference was observed.

Keywords: Magnetic nanofluids, thermal conductivity, Viscosity, NiFe2O4-water, CoFe2O4-water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842
355 Jitter Transfer in High Speed Data Links

Authors: Tsunwai Gary Yip

Abstract:

Phase locked loops for data links operating at 10 Gb/s or faster are low phase noise devices designed to operate with a low jitter reference clock. Characterization of their jitter transfer function is difficult because the intrinsic noise of the device is comparable to the random noise level in the reference clock signal. A linear model is proposed to account for the intrinsic noise of a PLL. The intrinsic noise data of a PLL for 10 Gb/s links is presented. The jitter transfer function of a PLL in a test chip for 12.8 Gb/s data links was determined in experiments using the 400 MHz reference clock as the source of simultaneous excitations over a wide range of frequency. The result shows that the PLL jitter transfer function can be approximated by a second order linear model.

Keywords: Intrinsic phase noise, jitter in data link, PLL jitter transfer function, high speed clocking in electronic circuit

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1946
354 Throughflow Effects on Thermal Convection in Variable Viscosity Ferromagnetic Liquids

Authors: G. N. Sekhar, P. G. Siddheshwar, G. Jayalatha, R. Prakash

Abstract:

The problem of thermal convection in temperature and magnetic field sensitive Newtonian ferromagnetic liquid is studied in the presence of uniform vertical magnetic field and throughflow. Using a combination of Galerkin and shooting techniques the critical eigenvalues are obtained for stationary mode. The effect of Prandtl number (Pr > 1) on onset is insignificant and nonlinearity of non-buoyancy magnetic parameter M3 is found to have no influence on the onset of ferroconvection. The magnetic buoyancy number, M1 and variable viscosity parameter, V have destabilizing influences on the system. The effect of throughflow Peclet number, Pe is to delay the onset of ferroconvection and this effect is independent of the direction of flow.

Keywords: Ferroconvection, throughflow, temperature dependent viscosity, magnetic field dependent viscosity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1147
353 Phase Jitter Transfer in High Speed Data Links

Authors: Tsunwai Gary Yip

Abstract:

Phase locked loops in 10 Gb/s and faster data links are low phase noise devices. Characterization of their phase jitter transfer functions is difficult because the intrinsic noise of the PLLs is comparable to the phase noise of the reference clock signal. The problem is solved by using a linear model to account for the intrinsic noise. This study also introduces a novel technique for measuring the transfer function. It involves the use of the reference clock as a source of wideband excitation, in contrast to the commonly used sinusoidal excitations at discrete frequencies. The data reported here include the intrinsic noise of a PLL for 10 Gb/s links and the jitter transfer function of a PLL for 12.8 Gb/s links. The measured transfer function suggests that the PLL responded like a second order linear system to a low noise reference clock.

Keywords: Intrinsic phase noise, jitter in data link, PLL jitter transfer function, high speed clocking in electronic circuit

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1601
352 Viscosity Model for Predicting the Power Output from Ocean Salinity and Temperature Energy Conversion System (OSTEC) Part 1: Theoretical Formulation

Authors: Ag. S. Abd. Hamid, S. K. Lee, J. Dayou, R. Yusoff, F. Sulaiman

Abstract:

The mixture between two fluids of different salinity has been proven to capable of producing electricity in an ocean salinity energy conversion system known as hydrocratic generator. The system relies on the difference between the salinity of the incoming fresh water and the surrounding sea water in the generator. In this investigation, additional parameter is introduced which is the temperature difference between the two fluids; hence the system is known as Ocean Salinity and Temperature Energy Conversion System (OSTEC). The investigation is divided into two papers. This first paper of Part 1 presents the theoretical formulation by considering the effect of fluid dynamic viscosity known as Viscosity Model and later compares with the conventional formulation which is Density Model. The dynamic viscosity model is used to predict the dynamic of the fluids in the system which in turns gives the analytical formulation of the potential power output that can be harvested. 

Keywords: Buoyancy, density, frictional head loss, kinetic power, viscosity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1869
351 The Radial Pulse Wave and Blood Viscosity

Authors: Hyunhee Ryu, Young Ju Jeon, Jaeuk U. Kim, Hae Jung Lee, Yu Jung Lee, Jong Yeol Kim

Abstract:

The aim of this study was to investigate the effect of blood viscosity on the radial pulse wave. For this, we obtained the radial pulse wave of 15 males with abnormal high hematocrit level and 47 males with normal hematocrit level at the age of thirties and forties. Various variables of the radial pulse wave between two groups were analyzed and compared by Student's T test. There are significant differences in several variables about height, time and area of the pulse wave. The first peak of the radial pulse wave was higher in abnormal high hematocrit group, but the third peak was higher and longer in normal hematocrit group. Our results suggest that the radial pulse wave can be used for diagnosis of high blood viscosity and more clinical application.

Keywords: Radial pulse wave, Blood viscosity, Hematocrit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1969
350 FEM Analysis of Occluded Ear Simulator with Narrow Slit Pathway

Authors: M. Sasajima, T. Yamaguchi, M. Watanabe, Y. Koike

Abstract:

This paper discusses the propagation of sound waves in air, specifically in narrow rectangular pathways of an occluded-ear simulator for acoustic measurements. In narrow pathways, both the speed of sound and the phase of the sound waves are affected by the damping of the air viscosity. Herein, we propose a new finite-element method (FEM) that considers the effects of the air viscosity. The method was developed as an extension of existing FEMs for porous, sound-absorbing materials. The results of a numerical calculation for a three-dimensional ear-simulator model using the proposed FEM were validated by comparing with theoretical lumped-parameter modeling analysis and standard values.

Keywords: Ear simulator, FEM, simulation, viscosity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2098
349 Preparation and Characterization of M. × Piperita L. Oil Based Gel Formulation

Authors: Peeyush Kumar, Sapna Mishra, Anushree Malik, Santosh Satya

Abstract:

The essential oil of M. × piperita L. was formulated into a topical gel. The prepared gel was characterized for its pH, viscosity, spreadiblity, consistency and extrudiblity, while its stability was evaluated under different temperature conditions. The prepared M. × piperita oil gel was clear and transparent. The pH value of developed gel was 6.6, while its viscosity was 1200 cP. Spreadability and consistency of the M. × piperita oil gel was 10.7 g.cm/sec and 7 mm, respectively. The prepared gel showed good extrudiblity. During the stability studies, no significant change in pH and viscosity as a function of time for gel was observed, indicating stability of prepared formulation. The gel developed in this study is expected to forward the usage of M. × piperita essential towards commercial application.

Keywords: M. × piperita L., formulation, gel, characterization, stability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3127
348 Effect of Flour Concentration and Retrogradation Treatment on Physical Properties of Instant Sinlek Brown Rice

Authors: Supat Chaiyakul, Direk Sukkasem, Patnachapa Natthapanpaisith

Abstract:

Sinlek rice flour beverage or instant product is a dietary supplement for dysphagia, or difficulty swallowing. It is also consumed by individuals who need to consume supplements to maintain their calorific needs. This product provides protein, fat, iron, and a high concentration of carbohydrate from rice flour. However, the application of native flour is limited due to its high viscosity. Starch modification by controlling starch retrogradation was used in this study. The research studies the effects of rice flour concentration and retrogradation treatment on the physical properties of instant Sinlek brown rice. The native rice flour, gelatinized rice flour, and flour gels retrograded under 4 °C for 3 and 7 days were investigated. From the statistical results, significant differences between native and retrograded flour were observed. The concentration of rice flour was the main factor influencing the swelling power, solubility, and pasting properties. With the increase in rice flour content from 10 to 15%, swelling power, peak viscosity, trough, and final viscosity decreased; but, solubility, pasting temperature, peak time, breakdown, and setback increased. The peak time, pasting temperature, peak viscosity, trough, and final viscosity decreased as the storage period increased from 3 to 7 days. The retrograded rice flour powders had lower pasting temperature, peak viscosity, breakdown, and final viscosity than the gelatinized and native flour powders. Reduction of starch viscosity by gelatinization and controlling starch retrogradation could allow for increased quantities of rice flour in instant rice beverages. Also, the treatment could increase the energy and nutrient densities of rice beverages without affecting the viscosity of this product.

Keywords: Instant rice, pasting properties, pregelatinization, retrogradation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1626