**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**30172

##### Correlation of Viscosity in Nanofluids using Genetic Algorithm-neural Network (GA-NN)

**Authors:**
Hajir Karimi,
Fakheri Yousefi,
Mahmood Reza Rahimi

**Abstract:**

**Keywords:**
genetic algorithm,
nanofluids,
neural network,
viscosity

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1328730

**References:**

[1] S.U.S. Choi, "Enhancing thermal conductivity of fluids with nanoparticles," ASME Publications FED-Vol. 231/MD-Vol. 66, pp. 99- 105, 1995.

[2] S. Lee, S.U.S. Choi, S. Li, J.A. Eastman, "Measuring thermal conductivity of fluids containing oxide nanoparticles," J. Heat Transfer 121, 280-289, 1999.

[3] X. Zhang and M. Fujii, "Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture," Int. J. Heat Mass Transfer 48 p. 2926, 2004.

[4] -Y. Ren, H. Xie and A. Cai, "effective thermal conductivity of nanofluids containing spherical nano particles," Appl. Phys. 38 3958, 2005.

[5] R. Prasher and E P. Phelan, "brownian motion based convective- conductive model for the effective thermal conductivity of nanofluids," ASME J. Heat Transfer, vol. 128 588, 2006,

[6] S. Lee, S.U.S. Choi, S. Li, J.A. Eastman, "Measuring thermal conductivity of fluids containing oxide nanoparticles," ASME. J. Heat Transfer, vol. 121 p. 280, 1999.

[7] C T. Nguyen, F. Desgranges, G. Roy, N. Galanis, T. Mare, S. Boucher and H.A. Mintsa, "Temperature and particle-size dependent viscosity data for water-based nanofluids-hysteresis phenomenon," Int. J. Heat Fluid Flow,vol. 28, p. 1492, 2007.

[8] S.M.S. Murshed, K.C. Leong and, C. Yang, "Investigations of thermal conductivity and viscosity of nanofluids," Int. J. Therm. Sci,. vol. 47, p. 560, 2008.

[9] R. Prasher, D. Song, J. Wang and P.E. Phelan, "Measurements of nanofluid viscosity and its implications for thermal applications," Appl. Phys. Lett.vol. 89, p. 133108, 2006.

[10] C. T. Nguyen, F. Desgranges, N. Galanis,G. Roy, T. Mare, S. Boucher and H. Angue Mintsa, "Viscosity data for Al2O3-water nanofluidhysteresis: is heat transfer enhancement using nanofluids reliable?," Int. J. Therm. Sci.vol. 47, p.103, 2008.

[11] Y. Yang, Z.G. Zhang, , E.A. Grulke, W.B. Anderson, G. Wu, "Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow,", J. Heat Mass Transfer, vol.48, (6), p.1107, 2008.

[12] C.T. Nguyen, F. Desgranges, N. Galanis, G. Roy, T. MarĂ©, S. Boucher, H. Angue Mintsa, "Viscosity data for Al2O3-water nanofluid-hysteresis: is heat transfer enhancement using nanofluids reliable," Int. J. Therm. Sci. vol. 47, pp. 103-111, 2008.

[13] R. Prasher, D. Song, J. Wang and P.E. Phelan, "Measurements of nanofluid viscosity and its implications for thermal applications," Appl. Phys. Lett.,vol. 89, p. 133108, 2006.

[14] A. Einstein, "Eine neue bestimmung der molekuldimensionen," Ann. Phys.vol.19 p.289, 1906.

[15] N Masoumi, N Sohrabi and A Behzadmehr, "A new model for calculating the effective viscosity of nanofluids," J. Phys. D: Appl. Phys,.vol. 42, 055501 p. 6pp, 2009.

[16] M.S. Hosseini, A. Mohebbi an S. Ghader, "Correlation of Shear Viscosity of Nanofluids Using the Local Composition Theory," Chinese Journal of Chemical Engineering, vol. 18(1), p. 102-110, 2010.

[17] S. E. B Maiga, C.T Nguyen, N. Galanis, and G. Roy, "Heat transfer behaviours of nanofluids in a uniformly heated tube," Superlattices and Microstructures, vol. 35, pp. 543-557, 2004a.

[18] D. P. Kulkarni, D. K. Das, and G. Chukwu, "Temperature dependent rheological property of copper oxide nanoparticles suspension (Nanofluid)," Journal of Nanoscience and Nanotechnology, vol. 6, 1150-1154, 2010.

[19] H. Karimi, F. yousefi, "Correlation of vapour liquid equilibria of binary mixtures using artificial neural networks," Chin. J. Chem. Eng., vol. 15(5) pp.765-771, 20007.

[20] H. Karimi, N. Saghatoleslami, M.R. Rahimi, "Prediction of water activity coefficient in TEG-Water system using diffusion neural network (DNN)," Chem. Biochem. Eng. Q. vol. 24 (2) pp.167-176, 2010.

[21] H. Kurt, M. Kayfeci, "Prediction of thermal conductivity of ethylene glycol-water solution by using artificial neural networks," Applied energy vol. 86, pp. 2244-2248, 2009.

[22] Edited by L. Jain, A.M. Fanelli, "Recent advances in artificial neural networks," Design and Applications, CRC Press. 2000.

[23] 35- H.K.D.H Bhadeshia, "Neural networks in materials science. ISIJ Int, vol. 39, 966, 1999.

[24] 36- K, Hormik, M. Stinchhcombe, H. White, "Multilayer feedforward networks are universal approximators," Neural Net.; vol. 68 pp. 59-66 1989.

[25] D. Goldberg, "Genetic Algorithms in Search, Optimization and Machine Learning," Addison-Wesley, 1989.

[26] C.T. Nguyen, F. Desgranges, G. Roy, N. Galanis, T. Mare, "Temperature and particle-size dependent viscosity data for water-based nanofluids - Hysteresis phenomenon," International Journal of Heat and Fluid Flow,vol. 28, pp. 1492-1506, 2007.