Search results for: phase ratio
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3334

Search results for: phase ratio

3334 50/50 Oil-Water Ratio Invert Emulsion Drilling Mud Using Vegetable Oil as Continuous Phase

Authors: P. C. Ihenacho, M. Burby, G. G. Nasr, G. C. Enyi

Abstract:

Formulation of a low oil-water ratio drilling mud with vegetable oil continuous phase without adversely affecting the mud rheology and stability has been a major challenge. A low oil-water ratio is beneficial in producing low fluid loss which is essential for wellbore stability. This study examined the possibility of 50/50 oil-water ratio invert emulsion drilling mud using a vegetable oil continuous phase. Jatropha oil was used as continuous phase. 12 ml of egg yolk which was separated from the albumen was added as the primary emulsifier additive. The rheological, stability and filtration properties were examined. The plastic viscosity and yield point were found to be 36cp and 17 Ib/100 ft2 respectively. The electrical stability at 48.9ºC was 353v and the 30 minutes fluid loss was 6ml. The results compared favourably with a similar formulation using 70/30 oil - water ratio giving plastic viscosity of 31cp, yield point of 17 Ib/100 ft2, electrical stability value of 480v and 12ml for the 30 minutes fluid loss. This study indicates that with a good mud composition using guided empiricism, 50/50 oil-water ratio invert emulsion drilling mud is feasible with a vegetable oil continuous phase. The choice of egg yolk as emulsifier additive is for compatibility with the vegetable oil and environmental concern. The high water content with no fluid loss additive will also minimise the cost of mud formulation.

Keywords: Environmental compatibility, low cost of mud formulation, low fluid loss, wellbore stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2911
3333 The Effect of Guanidine Hydrochloride on Phase Diagram of PEG- Phosphate Aqueous Two-Phase System

Authors: Farshad Rahimpour, Mohsen Pirdashti

Abstract:

This report focus on phase behavior of polyethylene glycol (PEG)4000/ phosphate/ guanidine hydrochloride/ water system at different guanidine hydrochloride concentrations and pH. The binodal of the systems was displaced toward higher concentrations of the components with increasing guanidine hydrochloride concentrations. The partition coefficient of guanidine hydrochloride was near unity and increased with decreasing pH and increasing PEG/salt (%w/w) ratio.

Keywords: Aqueous two-phase system, guanidinehydrochloride, partition coefficient, phase diagram.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1800
3332 An Investigation to Effective Parameters on the Damage of Dual Phase Steels by Acoustic Emission Using Energy Ratio

Authors: A. Fallahi, R. Khamedi

Abstract:

Dual phase steels (DPS)s have a microstructure consisting of a hard second phase called Martensite in the soft Ferrite matrix. In recent years, there has been interest in dual-phase steels, because the application of these materials has made significant usage; particularly in the automotive sector Composite microstructure of (DPS)s exhibit interesting characteristic mechanical properties such as continuous yielding, low yield stress to tensile strength ratios(YS/UTS), and relatively high formability; which offer advantages compared with conventional high strength low alloy steels(HSLAS). The research dealt with the characterization of damage in (DPS)s. In this study by review the mechanisms of failure due to volume fraction of martensite second phase; a new method is introduced to identifying the mechanisms of failure in the various phases of these types of steels. In this method the acoustic emission (AE) technique was used to detect damage progression. These failure mechanisms consist of Ferrite-Martensite interface decohesion and/or martensite phase fracture. For this aim, dual phase steels with different volume fraction of martensite second phase has provided by various heat treatment methods on a low carbon steel (0.1% C), and then AE monitoring is used during tensile test of these DPSs. From AE measurements and an energy ratio curve elaborated from the value of AE energy (it was obtained as the ratio between the strain energy to the acoustic energy), that allows detecting important events, corresponding to the sudden drops. These AE signals events associated with various failure mechanisms are classified for ferrite and (DPS)s with various amount of Vm and different martensite morphology. It is found that AE energy increase with increasing Vm. This increasing of AE energy is because of more contribution of martensite fracture in the failure of samples with higher Vm. Final results show a good relationship between the AE signals and the mechanisms of failure.

Keywords: Dual phase steel (DPS)s, Failure mechanisms, Acoustic Emission, Fracture strain energy to the acoustic energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1850
3331 Phase Noise Impact on BER in Space Communication

Authors: Ondrej Baran, Miroslav Kasal, Petr Vagner, Tomas Urbanec

Abstract:

This paper deals with the modeling and the evaluation of a multiplicative phase noise influence on the bit error ratio in a general space communication system. Our research is focused on systems with multi-state phase shift keying modulation techniques and it turns out, that the phase noise significantly affects the bit error rate, especially for higher signal to noise ratios. These results come from a system model created in Matlab environment and are shown in a form of constellation diagrams and bit error rate dependencies. The change of a user data bit rate is also considered and included into simulation results. Obtained outcomes confirm theoretical presumptions.

Keywords: Additive thermal noise, AWGN, BER, bit error rate, multiplicative phase noise, phase shift keying.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4556
3330 Influence of Raw Materials Ratio and Sintering Temperature on the Properties of the Refractory Mullite-Corundum Ceramics

Authors: L. Mahnicka

Abstract:

The alumosilicate ceramics with mullite crystalline phase are used in various branches of science and technique. The mullite refractory ceramics with high porosity serve as a heat insulator and as a constructional materials [1], [2]. The purpose of the work was to sinter high porosity ceramic and to increase the quantity of mullite phase in this mullite, mullite-corundum ceramics. Two types of compositions were prepared at during the experiment. The first type is compositions with commercial alumina and silica oxides. The second type is from mixing these oxides with 10, 20 and 30 wt.%. of kaolin. In all samples the Al2O3 and SiO2 were in 2.57:1 ratio, because that was conformed to mullite stechiometric compositions (3Al2O3.2SiO2). The types of alumina oxides were α-Al2O3 (d50=4µm) and γ-Al2O3 (d50=80µm). Ratios of α-: γ-Al2O3 were (1:1) or (1:3). The porous materials were prepared by slip casting of suspension of raw materials. The aluminium paste (0.18 wt.%) was used as a pore former. Water content in the suspensions was 26-47 wt.%. Pore formation occurred as a result of hydrogen formation in chemical reaction between aluminium paste and water [2]. The samples were sintered at the temperature of 1650°C and 1750°C for one hour. The increasing amount of kaolin, α-: γ-Al2O3 at the ratio (1:3) and sintering at the highest temperature raised the quantity of mullite phase. The mullite phase began to dominate over the corundum phase.

Keywords: Alumina, Kaolin, Mullite-corundum, Porous refractory ceramics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2807
3329 Pressure Induced Isenthalpic Oscillations with Condensation and Evaporation in Saturated Two-Phase Fluids

Authors: Joel V. Madison, Hans E. Kimmel

Abstract:

Saturated two-phase fluid flows are often subject to pressure induced oscillations. Due to compressibility the vapor bubbles act as a spring with an asymmetric non-linear characteristic. The volume of the vapor bubbles increases or decreases differently if the pressure fluctuations are compressing or expanding; consequently, compressing pressure fluctuations in a two-phase pipe flow cause less displacement in the direction of the pipe flow than expanding pressure fluctuations. The displacement depends on the ratio of liquid to vapor, the ratio of pressure fluctuations over average pressure and on the exciting frequency of the pressure fluctuations. In addition, pressure fluctuations in saturated vapor bubbles cause condensation and evaporation within the bubbles and change periodically the ratio between liquid to vapor, and influence the dynamical parameters for the oscillation. The oscillations are conforming to an isenthalpic process at constant enthalpy with no heat transfer and no exchange of work. The paper describes the governing non-linear equation for twophase fluid oscillations with condensation and evaporation, and presents steady state approximate solutions for free and for pressure induced oscillations. Resonance criteria and stability are discussed.

Keywords: condensation, evaporation, non-linear oscillations, pressure induced, two-phase flow

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1461
3328 Study on the Mechanical Behavior of the Varactor of a Micro-Phase Shifter

Authors: Mehrdad Nouri Khajavi, Sajjad Ahoui Ghazvin, Ghader Rezazadeh, Mohammad Fathalilou

Abstract:

In this paper static and dynamic response of a varactor of a micro-phase shifter to DC, step DC and AC voltages have been studied. By presenting a mathematical modeling Galerkin-based step by step linearization method (SSLM) and Galerkin-based reduced order model have been used to solve the governing static and dynamic equations, respectively. The calculated static and dynamic pull-in voltages have been validated by previous experimental and theoretical results and a good agreement has been achieved. Then the frequency response and phase diagram of the system has been studied. It has been shown that applying the DC voltage shifts down the phase diagram and frequency response. Also increasing the damping ratio shifts up the phase diagram.

Keywords: MEMS, Phase Shifter, Pull-in Voltage, PhaseDiagram

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1645
3327 T-DOF PID Controller Design using Characteristic Ratio Assignment Method for Quadruple Tank Process

Authors: Tianchai Suksri, U-thai Sritheeravirojana, Arjin Numsomran, Viriya Kongrattana, Thongchai Werataweemart

Abstract:

A control system design with Characteristic Ratio Assignment (CRA) is proven that effective for SISO control design. But the control system design for MIMO via CRA is not concrete procedure. In this paper presents the control system design method for quadruple-tank process via CRA. By using the decentralized method for both minimum phase and non-minimum phase are made. The results from PI and PID controller design via CRA can be illustrated the validity of our approach by MATLAB.

Keywords: CRA, Quadruple-Tank.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1551
3326 A Study of the Alumina Distribution in the Lab-Scale Cell during Aluminum Electrolysis

Authors: Olga Tkacheva, Pavel Arkhipov, Alexey Rudenko, Yurii Zaikov

Abstract:

The aluminum electrolysis process in the conventional cryolite-alumina electrolyte with cryolite ratio of 2.7 was carried out at an initial temperature of 970 °C and the anode current density of 0.5 A/cm2 in a 15A lab-scale cell in order to study the formation of the side ledge during electrolysis and the alumina distribution between electrolyte and side ledge. The alumina contained 35.97% α-phase and 64.03% γ-phase with the particles size in the range of 10-120 μm. The cryolite ratio and the alumina concentration were determined in molten electrolyte during electrolysis and in frozen bath after electrolysis. The side ledge in the electrolysis cell was formed only by the 13th hour of electrolysis. With a slight temperature decrease a significant increase in the side ledge thickness was observed. The basic components of the side ledge obtained by the XRD phase analysis were Na3AlF6, Na5Al3F14, Al2O3, and NaF.5CaF2.AlF3. As in the industrial cell, the increased alumina concentration in the side ledge formed on the cell walls and at the ledge-electrolyte-aluminum three-phase boundary during aluminum electrolysis in the lab cell was found (FTP No 05.604.21.0239, IN RFMEFI60419X0239).

Keywords: Alumina, alumina distribution, aluminum electrolyzer, cryolite-alumina electrolyte, side ledge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 681
3325 A novel Iterative Approach for Phase Noise Cancellation in Multi-Carrier Code Division Multiple Access (MC-CDMA) Systems

Authors: Joumana Farah, François Marx, Clovis Francis

Abstract:

The aim of this paper is to emphasize and alleviate the effect of phase noise due to imperfect local oscillators on the performances of a Multi-Carrier CDMA system. After the cancellation of Common Phase Error (CPE), an iterative approach is introduced which iteratively estimates Inter-Carrier Interference (ICI) components in the frequency domain and cancels their contribution in the time domain. Simulation are conducted in order to investigate the achievable performances for several parameters, such as the spreading factor, the modulation order, the phase noise power and the transmission Signal-to-Noise Ratio.

Keywords: Inter-carrier Interference, Multi-Carrier Code DivisionMultiple Access, Orthogonal Frequency Division Multiplexing, Phase noise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1515
3324 Phase Equilibrium in Aqueous Two-phase Systems Containing Poly (propylene glycol) and Sodium Citrate at Different pH

Authors: Farshad Rahimpour, Ali Reza Baharvand

Abstract:

The phase diagrams and compositions of coexisting phases have been determined for aqueous two-phase systems containing poly(propylene glycol) with average molecular weight of 425 and sodium citrate at various pH of 3.93, 4.44, 4.6, 4.97, 5.1, 8.22. The effect of pH on the salting-out effect of poly (propylene glycol) by sodium citrate has been studied. It was found that, an increasing in pH caused the expansion of two-phase region. Increasing pH also increases the concentration of PPG in the PPGrich phase, while the salt-rich phase will be somewhat mole diluted.

Keywords: Aqueous two-phase system, Phase equilibrium, Biomolecules purification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2601
3323 n-Butanol as an Extractant for Lactic Acid Recovery

Authors: Kanungnit Chawong, Panarat Rattanaphanee

Abstract:

Extraction of lactic acid from aqueous solution using n-butanol as an extractant was studied. Effect of mixing time, pH of the aqueous solution, initial lactic acid concentration, and volume ratio between the organic and the aqueous phase were investigated. Distribution coefficient and degree of lactic acid extraction was found to increase when the pH of aqueous solution was decreased. The pH Effect was substantially pronounced at pH of the aqueous solution less than 1. Initial lactic acid concentration and organic-toaqueous volume ratio appeared to have positive effect on the distribution coefficient and the degree of extraction. Due to the nature of n-butanol that is partially miscible in water, incorporation of aqueous solution into organic phase was observed in the extraction with large organic-to-aqueous volume ratio.

Keywords: Lactic acid, liquid-liquid extraction, n-Butanol, Solvating extractant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3118
3322 Blind Source Separation for Convoluted Signals Based on Properties of Acoustic Transfer Function in Real Environments

Authors: Takaaki Ishibashi

Abstract:

Frequency domain independent component analysis has a scaling indeterminacy and a permutation problem. The scaling indeterminacy can be solved by use of a decomposed spectrum. For the permutation problem, we have proposed the rules in terms of gain ratio and phase difference derived from the decomposed spectra and the source-s coarse directions. The present paper experimentally clarifies that the gain ratio and the phase difference work effectively in a real environment but their performance depends on frequency bands, a microphone-space and a source-microphone distance. From these facts it is seen that it is difficult to attain a perfect solution for the permutation problem in a real environment only by either the gain ratio or the phase difference. For the perfect solution, this paper gives a solution to the problems in a real environment. The proposed method is simple, the amount of calculation is small. And the method has high correction performance without depending on the frequency bands and distances from source signals to microphones. Furthermore, it can be applied under the real environment. From several experiments in a real room, it clarifies that the proposed method has been verified.

Keywords: blind source separation, frequency domain independent component analysys, permutation correction, scale adjustment, target extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1398
3321 Model of Controled Six Phase Induction Motor

Authors: R. Rinkeviciene, B. Kundrotas, S. Lisauskas

Abstract:

In this paper, the authors take a look at advantages of multiphase induction motors comparing them with three phase ones and present the applications where six-phase induction motors are used. They elaborate the mathematical model of six-phase induction motor with two similar stator three phase winding, shifted by 30 degrees in space and three phase winding in rotor, in synchronous reference frame for soft starting and scalar control. The authors simulate and discuss results of speed and torque starting transients.

Keywords: Model, scalar control, six-phase induction motor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3069
3320 A Condition Rating System for Wastewater Treatment Plants Infrastructures

Authors: Altayeb Qasem, Tarek Zayed, Zhi Chen

Abstract:

Statistics Canada stated that the wastewater treatment facilities in most provinces are aging and passes 63% of their useful life in 2007 the highest ratio among public infrastructure assets. Currently, there is no standard condition rating system for wastewater treatment plants that give a specific rating index that describe the physical integrity of different infrastructure elements in the treatment plant and its environmental performance. The main objective of this study is to develop a condition-rating index for wastewater treatment plants mainly activated sludge systems. The proposed WWTP CRI, is based on dividing the treatment plant into its three treatment phases; primary phase, secondary phase and the tertiary phase. The condition-rating index will reflect the infrastructures state for each phase, mainly tanks, pipes, blowers and pumps.

Keywords: Condition rating index, Wastewater treatment plants, AHP- MUAT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2748
3319 Simultaneous Reaction-Separation in a Microchannel Reactor with the Aid of a Guideline Structure

Authors: Salah Aljbour, Hiroshi Yamada, Tomohiko Tagawa

Abstract:

A microchannel with two inlets and two outlets was tested as a potential reactor to carry out two-phase catalytic phase transfer reaction with phase separation at the exit of the microchannel. The catalytic phase transfer reaction between benzyl chloride and sodium sulfide was chosen as a model reaction. The effect of operational time on the conversion was studied. By utilizing a multiphase parallel flow inside the microchannel reactor with the aid of a guideline structure, the catalytic phase reaction followed by phase separation could be ensured. The organic phase could be separated completely from one exit and part of the aqueous phase was separated purely and could be reused with slightly affecting the catalytic phase transfer reaction.

Keywords: Green engineering, microchannel reactor, multiphase reaction, process intensification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1551
3318 Response Surface Modeling of Lactic Acid Extraction by Emulsion Liquid Membrane: Box-Behnken Experimental Design

Authors: A. Thakur, P. S. Panesar, M. S. Saini

Abstract:

Extraction of lactic acid by emulsion liquid membrane technology (ELM) using n-trioctyl amine (TOA) in n-heptane as carrier within the organic membrane along with sodium carbonate as acceptor phase was optimized by using response surface methodology (RSM). A three level Box-Behnken design was employed for experimental design, analysis of the results and to depict the combined effect of five independent variables, vizlactic acid concentration in aqueous phase (cl), sodium carbonate concentration in stripping phase (cs), carrier concentration in membrane phase (ψ), treat ratio, and batch extraction time (τ)  with equal volume of organic and external aqueous phase on lactic acid extraction efficiency. The maximum lactic acid extraction efficiency (ηext) of 98.21%from aqueous phase in a batch reactor using ELM was found at the optimized values for test variables, cl, cs, ψ, and τ as 0.06 [M], 0.18 [M], 4.72 (%,v/v), 1.98 (v/v) and 13.36 min respectively. 

Keywords: Emulsion liquid membrane, extraction, lactic acid, n-trioctylamine, response surface methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2289
3317 Linear Stability Characteristics of Wake-Shear Layers in Two-Phase Shallow Flows

Authors: Inta Volodko, Valentina Koliskina

Abstract:

Linear stability of wake-shear layers in two-phase shallow flows is analyzed in the present paper. Stability analysis is based on two-dimensional shallow water equations. It is assumed that the fluid contains uniformly distributed solid particles. No dynamic interaction between the carrier fluid and particles is expected in the initial moment. Linear stability curves are obtained for different values of the particle loading parameter, the velocity ratio and the velocity deficit. It is shown that the increase in the velocity ratio destabilizes the flow. The particle loading parameter has a stabilizing effect on the flow. The role of the velocity deficit is also destabilizing: the increase of the velocity deficit leads to less stable flow.

Keywords: Linear stability, Shallow flows, Wake-shear flows.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1207
3316 Experimental Study on the Effects of Water-in-Oil Emulsions to the Pressure Drop in Pipeline Flow

Authors: S. S. Dol, M. S. Chan, S. F. Wong, J. S. Lim

Abstract:

Emulsion formation is unavoidable and can be detrimental to an oil field production. The presence of stable emulsions also reduces the quality of crude oil and causes more problems in the downstream refinery operations, such as corrosion and pipeline pressure drop. Hence, it is important to know the effects of emulsions in the pipeline. Light crude oil was used for the continuous phase in the W/O emulsions where the emulsions pass through a flow loop to test the pressure drop across the pipeline. The results obtained shows that pressure drop increases as water cut is increased until it peaks at the phase inversion of the W/O emulsion between 30% to 40% water cut. Emulsions produced by gradual constrictions show a lower stability as compared to sudden constrictions. Lower stability of emulsions in gradual constriction has the higher influence of pressure drop compared to a sudden sharp decrease in diameter in sudden constriction. Generally, sudden constriction experiences pressure drop of 0.013% to 0.067% higher than gradual constriction of the same ratio. Lower constriction ratio cases cause larger pressure drop ranging from 0.061% to 0.241%. Considering the higher profitability in lower emulsion stability and lower pressure drop at the developed flow region of different constrictions, an optimum design of constriction is found to be gradual constriction with a ratio of 0.5.

Keywords: Constriction, pressure drop, turbulence, water cut, water-in-oil emulsions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1074
3315 Generalized d-q Model of n-Phase Induction Motor Drive

Authors: G. Renukadevi, K. Rajambal

Abstract:

This paper presents a generalized d-q model of n- phase induction motor drive. Multi -phase (n-phase) induction motor (more than three phases) drives possess several advantages over conventional three-phase drives, such as reduced current/phase without increasing voltage/phase, lower torque pulsation, higher torque density, fault tolerance, stability, high efficiency and lower current ripple. When the number of phases increases, it is also possible to increase the power in the same frame. In this paper, a generalized dq-axis model is developed in Matlab/Simulink for an n-phase induction motor. The simulation results are presented for 5, 6, 7, 9 and 12 phase induction motor under varying load conditions. Transient response of the multi-phase induction motors are given for different number of phases. Fault tolerant feature is also analyzed for 5-phase induction motor drive.

Keywords: d-q model, dynamic Response, fault tolerant feature, Matlab/Simulink, multi-phase induction motor, transient response.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10485
3314 First Principles Study of Structural and Elastic Properties of BaWO4 Scheelite Phase Structure under Pressure

Authors: A. Benmakhlouf, A. Bentabet

Abstract:

In this paper, we investigated the athermal pressure behavior of the structural and elastic properties of scheelite BaWO4 phase up to 7 GPa using the ab initio pseudo-potential method. The calculated lattice parameters pressure relation have been compared with the experimental values and found to be in good agreement with these results. Moreover, we present for the first time the investigation of the elastic properties of this compound using the density functional perturbation theory (DFPT). It is shown that this phase is mechanically stable up to 7 GPa after analyzing the calculated elastic constants. Other relevant quantities such as bulk modulus, pressure derivative of bulk modulus, shear modulus; Young’s modulus, Poisson’s ratio, anisotropy factors, Debye temperature and sound velocity have been calculated. The obtained results, which are reported for the first time to the best of the author’s knowledge, can facilitate assessment of possible applications of the title material.

Keywords: Pseudo-potential method, pressure, structural and elastic properties, scheelite BaWO4 phase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2073
3313 Optimization of Bit Error Rate and Power of Ad-hoc Networks Using Genetic Algorithm

Authors: Anjana Choudhary

Abstract:

The ad hoc networks are the future of wireless technology as everyone wants fast and accurate error free information so keeping this in mind Bit Error Rate (BER) and power is optimized in this research paper by using the Genetic Algorithm (GA). The digital modulation techniques used for this paper are Binary Phase Shift Keying (BPSK), M-ary Phase Shift Keying (M-ary PSK), and Quadrature Amplitude Modulation (QAM). This work is implemented on Wireless Ad Hoc Networks (WLAN). Then it is analyze which modulation technique is performing well to optimize the BER and power of WLAN.

Keywords: Bit Error Rate, Genetic Algorithm, Power, Phase Shift Keying, Quadrature Amplitude Modulation, Signal to Noise Ratio, Wireless Ad Hoc Networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3078
3312 Design and Analysis of Fault Tolerate feature of n-Phase Induction Motor Drive

Authors: G. Renuka Devi

Abstract:

This paper presents design and analysis of fault tolerate feature of n-phase induction motor drive. The n-phase induction motor (more than 3-phases) has a number of advantages over conventional 3-phase induction motor, it has low torque pulsation with increased torque density, more fault tolerant feature, low current ripple with increased efficiency. When increasing the number of phases, it has reduced current per phase without increasing per phase voltage, resulting in an increase in the total power rating of n-phase motors in the same volume machine. In this paper, the theory of operation of a multi-phase induction motor is discussed. The detailed study of d-q modeling of n-phase induction motors is elaborated. The d-q model of n-phase (5, 6, 7, 9 and 12) induction motors is developed in a MATLAB/Simulink environment. The steady state and dynamic performance of the multi-phase induction motor is studied under varying load conditions. Comparison of 5-phase induction is presented under normal and fault conditions.

Keywords: d-q model, dynamic Response, fault tolerant feature, matlab/simulink, multi-phase induction motor, transient response.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 522
3311 Design of an Ultra Low Power Low Phase Noise CMOS LC Oscillator

Authors: Mahdi Ebrahimzadeh

Abstract:

In this paper we introduce an ultra low power CMOS LC oscillator and analyze a method to design a low power low phase noise complementary CMOS LC oscillator. A 1.8GHz oscillator is designed based on this analysis. The circuit has power supply equal to 1.1 V and dissipates 0.17 mW power. The oscillator is also optimized for low phase noise behavior. The oscillator phase noise is -126.2 dBc/Hz and -144.4 dBc/Hz at 1 MHz and 8 MHz offset respectively.

Keywords: LC oscillator, Low Power, Low Phase Noise

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3752
3310 Effect of Various Nozzle Profiles on Performance of a Two Phase Flow Jet Pump

Authors: Vishnu Prasad Sharma, S. Kumaraswamy, A. Mani

Abstract:

This paper reports on the results of experimental investigations on the performance of a jet pump operated under selected primary flows to optimize the related parameters. For this purpose a two-phase flow jet pump was used employing various profiles of nozzles as the primary device which was designed, fabricated and used along with the combination of mixing tube and diffuser. The profiles employed were circular, conical, and elliptical. The diameter of the nozzle used was 4 mm. The area ratio of the jet pump was 0.16. The test facility created for this purpose was an open loop continuous circulation system. Performance of the jet pump was obtained as iso-efficiency curves on characteristic curves drawn for various water flow rates. To perform the suction capability, evacuation test was conducted at best efficiency point for all the profiles.

Keywords: Evacuation test, jet pump, nozzle profile, nozzle spacing, performance test, two phase flow

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3278
3309 Generalized Mean-field Theory of Phase Unwrapping via Multiple Interferograms

Authors: Yohei Saika

Abstract:

On the basis of Bayesian inference using the maximizer of the posterior marginal estimate, we carry out phase unwrapping using multiple interferograms via generalized mean-field theory. Numerical calculations for a typical wave-front in remote sensing using the synthetic aperture radar interferometry, phase diagram in hyper-parameter space clarifies that the present method succeeds in phase unwrapping perfectly under the constraint of surface- consistency condition, if the interferograms are not corrupted by any noises. Also, we find that prior is useful for extending a phase in which phase unwrapping under the constraint of the surface-consistency condition. These results are quantitatively confirmed by the Monte Carlo simulation.

Keywords: Bayesian inference, generalized mean-field theory, phase unwrapping, statistical mechanics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1611
3308 Frequency-Dependent and Full Range Tunable Phase Shifter

Authors: Yufu Yin, Tao Lin, Shanghong Zhao, Zihang Zhu, Xuan Li, Wei Jiang, Qiurong Zheng, Hui Wang

Abstract:

In this paper, a frequency-dependent and tunable phase shifter is proposed and numerically analyzed. The key devices are the dual-polarization binary phase shift keying modulator (DP-BPSK) and the fiber Bragg grating (FBG). The phase-frequency response of the FBG is employed to determine the frequency-dependent phase shift. The simulation results show that a linear phase shift of the recovered output microwave signal which depends on the frequency of the input RF signal is achieved. In addition, by adjusting the power of the RF signal, the full range phase shift from 0° to 360° can be realized. This structure shows the spurious free dynamic range (SFDR) of 70.90 dB·Hz2/3 and 72.11 dB·Hz2/3 under different RF powers.

Keywords: Microwave photonics, phase shifter, spurious free dynamic range, frequency-dependent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1007
3307 Approximation for Average Error Probability of BPSK in the Presence of Phase Error

Authors: Yeonsoo Jang, Dongweon Yoon, Ki Ho Kwon, Jaeyoon Lee, Wooju Lee

Abstract:

Phase error in communications systems degrades error performance. In this paper, we present a simple approximation for the average error probability of the binary phase shift keying (BPSK) in the presence of phase error having a uniform distribution on arbitrary intervals. For the simple approximation, we use symmetry and periodicity of a sinusoidal function. Approximate result for the average error probability is derived, and the performance is verified through comparison with simulation result.

Keywords: Average error probability, Phase shift keying, Phase error

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2012
3306 Modeling, Analysis and Simulation of 4-Phase Boost Converter

Authors: Nagulapati Kiran, V. Rangavalli, B. Vanajakshi

Abstract:

This paper designs the four-phase Boost Converter which overcomes the problem of high input ripple current and output ripple voltage. Digital control is more convenient for such a topology on basis of synchronization, phase shift operation, etc. Simulation results are presented for open-loop and closed-loop for four phase boost converter. This control scheme is applicable for PFC rectifiers as well. Thus a comparative analysis based on the obtained results is performed.

Keywords: Boost Converter, Bode plot, PI Controller, Four phase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3952
3305 M-ary Chaotic Sequence Based SLM-OFDM System for PAPR Reduction without Side-Information

Authors: A.Goel, M. Agrawal, P. Gupta Poddar

Abstract:

Selected Mapping (SLM) is a PAPR reduction technique, which converts the OFDM signal into several independent signals by multiplication with the phase sequence set and transmits one of the signals with lowest PAPR. But it requires the index of the selected signal i.e. side information (SI) to be transmitted with each OFDM symbol. The PAPR reduction capability of the SLM scheme depends on the selection of phase sequence set. In this paper, we have proposed a new phase sequence set generation scheme based on M-ary chaotic sequence and a mapping scheme to map quaternary data to concentric circle constellation (CCC) is used. It is shown that this method does not require SI and provides better SER performance with good PAPR reduction capability as compared to existing SLMOFDM methods.

Keywords: Orthogonal frequency division multiplexing (OFDM), Peak-to-average power ratio (PAPR), Selected mapping (SLM), Side information (SI)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1917