Bridging Stress Modeling of Composite Materials Reinforced by Fibers Using Discrete Element Method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33093
Bridging Stress Modeling of Composite Materials Reinforced by Fibers Using Discrete Element Method

Authors: Chong Wang, Kellem M. Soares, Luis E. Kosteski

Abstract:

The problem of toughening in brittle materials reinforced by fibers is complex, involving all of the mechanical properties of fibers, matrix and the fiber/matrix interface, as well as the geometry of the fiber. Development of new numerical methods appropriate to toughening simulation and analysis is necessary. In this work, we have performed simulations and analysis of toughening in brittle matrix reinforced by randomly distributed fibers by means of the discrete elements method. At first, we put forward a mechanical model of toughening contributed by random fibers. Then with a numerical program, we investigated the stress, damage and bridging force in the composite material when a crack appeared in the brittle matrix. From the results obtained, we conclude that: (i) fibers of high strength and low elasticity modulus are beneficial to toughening; (ii) fibers of relatively high elastic modulus compared to the matrix may result in substantial matrix damage due to spalling effect; (iii) employment of high-strength synthetic fibers is a good option for toughening. We expect that the combination of the discrete element method (DEM) with the finite element method (FEM) can increase the versatility and efficiency of the software developed. The present work can guide the design of ceramic composites of high performance through the optimization of the parameters.

Keywords: Bridging stress, discrete element method, fiber reinforced composites, toughening.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1100555

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1898

References:


[1] C. Wang, L. F. Friedrich, “Computational model of effective fibers on toughening in fiber reinforced composites at an early stage of crack formation,” in Proc. 20th Annual International Conference on Composites or Nano Engineering, Beijing, 2012.
[2] Y. Wang, V. C. Li, S. Backer, “Modelling of fibre pull-out from a cement matrix,” Int. J. Cement Composites Lightweight Concrete, vol. 10, pp. 143-149, 1988.
[3] V. C. Li, Y. Wang, S. Backer, “A micromechanical model of tension softening and bridging toughening of short random fiber reinforced brittle matrix composites,” J. Mech. Phys. Solids, vol. 39, pp. 607- 625, 1991.
[4] V. C. Li, “A simplified micromechanical model of compressive strength of fiber-reinforced cementitious composites,” Cement & Concrete Composites, vol. 14, pp. 131-141, 1992.
[5] Z. Lin, V. C. Li, “Crack bridging in fiber reinforced cementitious composites with slip-hardening interfaces,” J. Mech. Phys. Solids, vol. 45, pp. 763-787, 1997.
[6] X. Chen, I. J. Beyerlein, L. C. Brinson, “Bridged crack models for the toughness of composites reinforced with curved nanotubes,” J. Mech. Phys. Solids, vol.59, pp. 1938-1952, 2011.
[7] J. A. Mohandesi, A. Sangghaleh, A. Nazari, N. Pourjavad, “Analytical modeling of strength in randomly oriented PP and PPTA short fiber reinforced gypsum composites,” Computational Materials Science, vol. 50, pp. 1619-1624, 2011.
[8] J. D. Riera, “Local effects in impact problems on concrete structures,” in Proc. Conference on Structural Analysis and Design of Nuclear Power Plants, Porto Alegre, Brazil, 1984, Vol. 3, CDU 264.04:621.311.2:621.039.
[9] J. D. Riera, I. Iturrioz, “Discrete element dynamic response of elastoplastic shells subjected to impulsive loading,” Communications in Num. Meth. in Eng., vol. 11, pp. 417-426, 1995.
[10] J. D. Riera, I. Iturrioz, “Discrete element model for evaluating impact and impulsive response of reinforced concrete plates and shells subjected to impulsive loading,” Nuclear Engineering and Design, vol. 179, pp. 135-144, 1998.
[11] L. E. Kosteski, J. D. Riera, I. Iturrioz, R. K. Singh, T. Kant, “Analysis of reinforced concrete plates subjected to impact employing the truss-like discrete element method,” Fatigue & Fracture of Engineering Materials & Structures, doi: 10.1111/ffe.12227, to be published.
[12] F. Schnaid, L. Spinelli, I. Iturrioz, M. Rocha, “Fracture mechanics in ground improvement design,” Ground Improvement, vol. 8, pp. 7-15, 2004.
[13] L. F. F. Miguel, I. Iturrioz, J. D. Riera, “Size effects and mesh independence in dynamic fracture analysis of brittle materials,” Computer Methods Modeling in Engineering & Sciences, vol. 56, pp. 1- 16, 2010.
[14] L. A. Dalguer, K. Irikura, J. D. Riera, H. C. Chiu, HC, “The importance of the dynamic source effects on strong ground motion during the 1999 Chi-Chi, Taiwan, earthquake: brief interpretation of the damage distribution on buildings,” Bulletin of the Seismological Society of America, vol. 91, pp. 1112-1127, 2001.
[15] A. Dalguer, K. Irikura, J. D. Riera, “Generations of New Cracks Accompanied by Dynamic Shear Rupture Propagation of the 2000 Tottori (Japan), Earthquake,” Bulletin of the Seismological Society of America, vol. 93, pp. 2236-2252, 2003.
[16] R. D. Rios, J. D. Riera, “Size effects in the analysis of reinforced concrete structures,” Engineering Structures, vol. 26, pp.1115-1125, 2004.
[17] L. F. F. Miguel, J. D. Riera, I. Iturrioz, “Influence of size on the constitutive equations of concrete or rock dowels,” International Journal for Numerical and Analytical Methods in Geomechanics, vol. 32, pp. 1857-1881, 2008.
[18] I. Iturrioz, L. F. F. Miguel, J. D. Riera JD, “Dynamic fracture analysis of concrete or rock plates by means of the Discrete Element Method,” Latin American Journal of Solids and Structures, vol. 6, pp. 229-245, 2009.
[19] L. E. Kosteski, I. Iturrioz, R. G. Batista, A. P. Cisilino, “The truss-like discrete element method in fracture and damage mechanics,” Engineering Computations, vol. 28, pp. 765-787, 2011.
[20] L. E. Kosteski, R. L. Barrios D'Ambra, I. Iturrioz, “Crack propagation in elastic solids using the truss-like discrete element method,” International Journal of Fracture, vol. 174, pp. 139-161, 2012.
[21] R. L. Barrios D`Ambra, I. Iturrioz, H. Coceres, L. E. Kosteski, T. W. Tech, A. Cisilino, “Cálculo del factor de intensidad de tensiones utilizando el método de los elementos discretos,” Revista Sul-Americana de Engenharia Estrutural, vol. 4, pp. 7-20, 2007.
[22] L. E. Kosteski, R. Barrios, I. Iturrioz, “Determinación de Parámetros Fractomecánicos Estáticos y Dinámicos utilizando el Método de los Elementos Discretos compuestos por barras,” Revista Internacional Métodos numéricos para cálculo y diseño en ingeniería, vol. 24, pp. 323-343, 2008.
[23] L. E. Kosteski, R. Barrios, I. Iturrioz, “Fractomechanics parameter calculus using the Discrete Element Method with bars,” Latin American Journal of Solids and Structures, vol. 6, pp. 301-321, 2009.
[24] M. A. Caravaca, L. E. Kosteski, J. C. Miño, R. L. Barrios D'ambra, B. Uberti, R. A. Casali, “Model for Vickers microhardness prediction applied to SnO2 and TiO2 in the normal and high pressure phases,” Journal of the European Ceramic Society, vol. 34, pp. 3791–3800, 2014.