Search results for: credibility measurement.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1136

Search results for: credibility measurement.

146 Using Manipulating Urban Layouts to Enhance Ventilation and Thermal Comfort in Street Canyons

Authors: Su Ying-Ming

Abstract:

High density of high rise buildings in urban areas lead to a deteriorative Urban Heat Island Effect, gradually. This study focuses on discussing the relationship between urban layout and ventilation comfort in street canyons. This study takes Songjiang Nanjing Rd. area of Taipei, Taiwan as an example to evaluate the wind environment comfort index by field measurement and Computational Fluid Dynamics (CFD) to improve both the quality and quantity of the environment. In this study, different factors including street blocks size, the width of buildings, street width ratio and the direction of the wind were used to discuss the potential of ventilation. The environmental wind field was measured by the environmental testing equipment, Testo 480. Evaluation of blocks sizes, the width of buildings, street width ratio and the direction of the wind was made under the condition of constant floor area with the help of Stimulation CFD to adjust research methods for optimizing regional wind environment. The results of this study showed the width of buildings influences the efficiency of outdoor ventilation; improvement of the efficiency of ventilation with large street width was also shown. The study found that Block width and H/D value and PR value has a close relationship. Furthermore, this study showed a significant relationship between the alteration of street block geometry and outdoor comfortableness.

Keywords: Urban ventilation path, ventilation efficiency indices, CFD, building layout.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1005
145 Investigating the Usability of a University Website from the Users’ Perspective: An Empirical Study of Benue State University Website

Authors: Abraham Undu, Stephen Akuma

Abstract:

Websites are becoming a major component of an organization’s success in our ever globalizing competitive world. The website symbolizes an organization, interacting or projecting an organization’s principles, culture, values, vision, and perspectives. It is an interface connecting organizations and their clients. The university, as an academic institution, makes use of a website to communicate and offer computing services to its stakeholders (students, staff, host community, university management etc). Unfortunately, website designers often give more consideration to the technology, organizational structure and business objectives of the university than to the usability of the site. Website designers end up designing university websites which do not meet the needs of the primary users. This empirical study investigated the Benue State University website from the point view of students. This research was realized by using a standardized website usability questionnaire based on the five factors of usability defined by WAMMI (Website Analysis and Measurement Inventory): attractiveness, controllability, efficiency, learnability and helpfulness. The result of the investigation showed that the university website (https://portal.bsum.edu.ng/) has neutral usability level because of the usability issues associated with the website. The research recommended feasible solutions to improve the usability of the website from the users’ perspective and also provided a modified usability model that will be used for better evaluation of the Benue State University website.

Keywords: Usability, usability factors, university websites, user’s perspective, WAMMI, modified usability model, Benue State University.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1003
144 Developing Pedotransfer Functions for Estimating Some Soil Properties using Artificial Neural Network and Multivariate Regression Approaches

Authors: Fereydoon Sarmadian, Ali Keshavarzi

Abstract:

Study of soil properties like field capacity (F.C.) and permanent wilting point (P.W.P.) play important roles in study of soil moisture retention curve. Although these parameters can be measured directly, their measurement is difficult and expensive. Pedotransfer functions (PTFs) provide an alternative by estimating soil parameters from more readily available soil data. In this investigation, 70 soil samples were collected from different horizons of 15 soil profiles located in the Ziaran region, Qazvin province, Iran. The data set was divided into two subsets for calibration (80%) and testing (20%) of the models and their normality were tested by Kolmogorov-Smirnov method. Both multivariate regression and artificial neural network (ANN) techniques were employed to develop the appropriate PTFs for predicting soil parameters using easily measurable characteristics of clay, silt, O.C, S.P, B.D and CaCO3. The performance of the multivariate regression and ANN models was evaluated using an independent test data set. In order to evaluate the models, root mean square error (RMSE) and R2 were used. The comparison of RSME for two mentioned models showed that the ANN model gives better estimates of F.C and P.W.P than the multivariate regression model. The value of RMSE and R2 derived by ANN model for F.C and P.W.P were (2.35, 0.77) and (2.83, 0.72), respectively. The corresponding values for multivariate regression model were (4.46, 0.68) and (5.21, 0.64), respectively. Results showed that ANN with five neurons in hidden layer had better performance in predicting soil properties than multivariate regression.

Keywords: Artificial neural network, Field capacity, Permanentwilting point, Pedotransfer functions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1773
143 Characterization of Polycyclic Aromatic Hydrocarbons in Ambient Air PM2.5 in an Urban Site of Győr, Hungary

Authors: A. Szabó Nagy, J. Szabó, Zs. Csanádi, J. Erdős

Abstract:

In Hungary, the measurement of ambient PM10-bound polycyclic aromatic hydrocarbon (PAH) concentrations is great importance for a number of reasons related to human health, the environment and compliance with European Union legislation. However, the monitoring of PAHs associated with PM2.5 aerosol fraction is still incomplete. Therefore, the main aim of this study was to investigate the concentration levels of PAHs in PM2.5 urban aerosol fraction. PM2.5 and associated PAHs were monitored in November 2014 in an urban site of Győr (Northwest Hungary). The aerosol samples were collected every day for 24-hours over two weeks with a high volume air sampler provided with a PM2.5 cut-off inlet. The levels of 19 PAH compounds associated with PM2.5 aerosol fraction were quantified by a gas chromatographic method. Polluted air quality for PM2.5 (>25 g/m3) was indicated in 50% of the collected samples. The total PAHs concentrations ranged from 2.1 to 37.3 ng/m3 with the mean value of 12.4 ng/m3. Indeno(123-cd)pyrene (IND) and sum of three benzofluoranthene isomers were the most dominant PAH species followed by benzo(ghi)perylene and benzo(a)pyrene (BaP). Using BaP-equivalent approach on the concentration data of carcinogenic PAH species, BaP, and IND contributed the highest carcinogenic exposure equivalent (1.50 and 0.24 ng/m3 on average). A selected number of concentration ratios of specific PAH compounds were calculated to evaluate the possible sources of PAH contamination. The ratios reflected that the major source of PAH compounds in the PM2.5 aerosol fraction of Győr during the study period was fossil fuel combustion from automobiles.

Keywords: Air, PM2.5, benzo(a)pyrene, polycyclic aromatic hydrocarbon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2452
142 Backcalculation of HMA Stiffness Based On Finite Element Model

Authors: Md Rashadul Islam, Umme Amina Mannan, Rafiqul A. Tarefder

Abstract:

Stiffness of Hot Mix Asphalt (HMA) in flexible pavement is largely dependent of temperature, mode of testing and age of pavement. Accurate measurement of HMA stiffness is thus quite challenging. This study determines HMA stiffness based on Finite Element Model (FEM) and validates the results using field data. As a first step, stiffnesses of different layers of a pavement section on Interstate 40 (I-40) in New Mexico were determined by Falling Weight Deflectometer (FWD) test. Pavement temperature was not measured at that time due to lack of temperature probe. Secondly, a FE model is developed in ABAQUS. Stiffness of the base, subbase and subgrade were taken from the FWD test output obtained from the first step. As HMA stiffness largely varies with temperature it was assigned trial and error approach. Thirdly, horizontal strain and vertical stress at the bottom of the HMA and temperature at different depths of the pavement were measured with installed sensors on the whole day on December 25th, 2012. Fourthly, outputs of FEM were correlated with measured stress-strain responses. After a number of trials a relationship was developed between the trial stiffness of HMA and measured mid-depth HMA temperature. At last, the obtained relationship between stiffness and temperature is verified by further FWD test when pavement temperature was recorded. A promising agreement between them is observed. Therefore, conclusion can be drawn that linear elastic FEM can accurately predict the stiffness and the structural response of flexible pavement.

Keywords: Asphalt pavement, falling weight deflectometer test, field instrumentation, finite element model, horizontal strain, temperature probes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2357
141 Post Elevated Temperature Effect on the Strength and Microstructure of Thin High Performance Cementitious Composites (THPCC)

Authors: A. Q. Sobia, A. Shyzleen, M. S. Hamidah, I. Azmi, S. F. A. Rafeeqi, S. Ahmad

Abstract:

Reinforced Concrete (RC) structures strengthened with fiber reinforced polymer (FRP) lack in thermal resistance under elevated temperatures in the event of fire. This phenomenon led to the lining of strengthened concrete with thin high performance cementitious composites (THPCC) to protect the substrate against elevated temperature. Elevated temperature effects on THPCC, based on different cementitious materials have been studied in the past but high-alumina cement (HAC)-based THPCC have not been well characterized. This research study will focus on the THPCC based on HAC replaced by 60%, 70%, 80% and 85% of ground granulated blast furnace slag (GGBS). Samples were evaluated by the measurement of their mechanical strength (28 & 56 days of curing) after exposed to 400°C, 600°C and 28°C of room temperature for comparison and corroborated by their microstructure study. Results showed that among all mixtures, the mix containing only HAC showed the highest compressive strength after exposed to 600°C as compared to other mixtures. However, the tensile strength of THPCC made of HAC and 60% GGBS content was comparable to the THPCC with HAC only after exposed to 600°C. Field emission scanning electron microscopy (FESEM) images of THPCC accompanying Energy Dispersive X-ray (EDX) microanalysis revealed that the microstructure deteriorated considerably after exposure to elevated temperatures which led to the decrease in mechanical strength.

Keywords: Ground granulated blast furnace slag, high aluminacement, microstructure at elevated temperature and residual strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2310
140 Saliva Cortisol and Yawning as a Predictor of Neurological Disease

Authors: Simon B. N. Thompson

Abstract:

Cortisol is important to our immune system, regulates our stress response, and is a factor in maintaining brain temperature. Saliva cortisol is a practical and useful non-invasive measurement that signifies the presence of the important hormone. Electrical activity in the jaw muscles typically rises when the muscles are moved during yawning and the electrical level is found to be correlated with the cortisol level. In two studies using identical paradigms, a total of 108 healthy subjects were exposed to yawning-provoking stimuli so that their cortisol levels and electrical nerve impulses from their jaw muscles was recorded. Electrical activity is highly correlated with cortisol levels in healthy people. The Hospital Anxiety and Depression Scale, Yawning Susceptibility Scale, General Health Questionnaire, demographic, health details were collected and exclusion criteria applied for voluntary recruitment: chronic fatigue, diabetes, fibromyalgia, heart condition, high blood pressure, hormone replacement therapy, multiple sclerosis, and stroke. Significant differences were found between the saliva cortisol samples for the yawners as compared with the non-yawners between rest and post-stimuli. Significant evidence supports the Thompson Cortisol Hypothesis that suggests rises in cortisol levels are associated with yawning. Ethics approval granted and professional code of conduct, confidentiality, and safety issues are approved therein.

Keywords: Cortisol, Diagnosis, Neurological Disease, Thompson Cortisol Hypothesis, Yawning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1504
139 The Effects of Increasing Unsaturation in Palm Oil and Incorporation of Carbon Nanotubes on Resinous Properties

Authors: Muhammad R. Islam, Mohammad Dalour H. Beg, Saidatul S. Jamari

Abstract:

Considering palm oil as non-drying oil owing to its low iodine value, an attempt was taken to increase the unsaturation in the fatty acid chains of palm oil for the preparation of alkyds. To increase the unsaturation in the palm oil, sulphuric acid (SA) and para-toluene sulphonic acid (PTSA) was used prior to alcoholysis for the dehydration process. The iodine number of the oil samples was checked for the unsaturation measurement by Wijs method. Alkyd resin was prepared using the dehydrated palm oil by following alcoholysis and esterification reaction. To improve the film properties 0.5wt.% multi-wall carbon nano tubes (MWCNTs) were used to manufacture polymeric film. The properties of the resins were characterized by various physico-chemical properties such as density, viscosity, iodine value, saponification value, etc. Structural elucidation was confirmed by Fourier transform of infrared spectroscopy and proton nuclear magnetic resonance; surfaces of the films were examined by field-emission scanning electron microscope. In addition, pencil hardness and chemical resistivity was also measured by using standard methods. The effect of enhancement of the unsaturation in the fatty acid chain found significant and motivational. The resin prepared with dehydrated palm oil showed improved properties regarding hardness and chemical resistivity testing. The incorporation of MWCNTs enhanced the thermal stability and hardness of the films as well.

Keywords: Alkyd resin, nano-coatings, dehydration, palm oil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2396
138 Quantifying the Second-Level Digital Divide on Sub-National Level

Authors: Vladimir Korovkin, Albert Park, Evgeny Kaganer

Abstract:

Digital divide, the gap in the access to the world of digital technologies and the socio-economic opportunities that they create is an important phenomenon of the XXI century. This gap may exist between countries, regions within a country or socio-demographic groups, creating the classes of “digital have and have nots”. While the 1st-level divide (the difference in opportunities to access the digital networks) was demonstrated to diminish with time, the issues of 2nd level divide (the difference in skills and usage of digital systems) and 3rd level divide (the difference in effects obtained from digital technology) may grow. The paper offers a systemic review of literature on the measurement of the digital divide, noting the certain conceptual stagnation due to the lack of effective instruments that would capture the complex nature of the phenomenon. As a result, many important concepts do not receive the empiric exploration they deserve. As a solution the paper suggests a composite Digital Life Index, that studies separately the digital supply and demand across seven independent dimensions providing for 14 subindices. The Index is based on Internet-borne data, a distinction from traditional research approaches that rely on official statistics or surveys. The application of the model to the study of the digital divide between Russian regions and between cities in China have brought promising results. The paper advances the existing methodological literature on the 2nd level digital divide and can also inform practical decision-making regarding the strategies of national and regional digital development.

Keywords: Digital transformation, second-level digital divide, composite index, digital policy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 379
137 Calibration of the Discrete Element Method Using a Large Shear Box

Authors: Corné J. Coetzee, Etienne Horn

Abstract:

One of the main challenges in using the Discrete Element Method (DEM) is to specify the correct input parameter values. In general, the models are sensitive to the input parameter values and accurate results can only be achieved if the correct values are specified. For the linear contact model, micro-parameters such as the particle density, stiffness, coefficient of friction, as well as the particle size and shape distributions are required. There is a need for a procedure to accurately calibrate these parameters before any attempt can be made to accurately model a complete bulk materials handling system. Since DEM is often used to model applications in the mining and quarrying industries, a calibration procedure was developed for materials that consist of relatively large (up to 40 mm in size) particles. A coarse crushed aggregate was used as the test material. Using a specially designed large shear box with a diameter of 590 mm, the confined Young’s modulus (bulk stiffness) and internal friction angle of the material were measured by means of the confined compression test and the direct shear test respectively. DEM models of the experimental setup were developed and the input parameter values were varied iteratively until a close correlation between the experimental and numerical results was achieved. The calibration process was validated by modelling the pull-out of an anchor from a bed of material. The model results compared well with experimental measurement.

Keywords: Discrete Element Method (DEM), calibration, shear box, anchor pull-out.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2617
136 Stochastic Risk Analysis Framework for Building Construction Projects

Authors: Abdulkadir Abu Lawal

Abstract:

The study was carried out to establish the probability density function of some selected building construction projects of similar complexity delivered using Bill of Quantities (BQ) and Lump Sum (LS) forms of contract, and to draw a reliability scenario for each form of contract. 30 of such delivered projects are analyzed for each of the contract forms using Weibull Analysis, and their Weibull functions (α, and β) are determined based on their completion times. For the BQ form of contract delivered projects, α is calculated as 1.6737E20 and β as + 0.0115 and for the LS form, α is found to be 5.6556E03 and β is determined as + 0.4535. Using these values, respective probability density functions are calculated and plotted, as handy tool for risk analysis of future projects of similar characteristics. By input of variables from other projects, decision making processes can be made for a whole project or its components using EVM Analysis in project evaluation and review techniques. This framework, as a quantitative approach, depends on the assumption of normality in projects completion time, it can help greatly in determining the completion time probability for veritable projects using any of the contract forms under consideration. Projects aspects that are not amenable to measurement, on the other hand, can be analyzed using fuzzy sets and fuzzy logic. This scenario can be drawn for different types of building construction projects, and using different suitable forms of contract in projects delivery.

Keywords: Building construction, Projects, Forms of contract, Probability density function, Reliability scenario.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 725
135 Compact Optical Sensors for Harsh Environments

Authors: Branislav Timotijevic, Yves Petremand, Markus Luetzelschwab, Dara Bayat, Laurent Aebi

Abstract:

Optical miniaturized sensors with remote readout are required devices for the monitoring in harsh electromagnetic environments. As an example, in turbo and hydro generators, excessively high vibrations of the end-windings can lead to dramatic damages, imposing very high, additional service costs. A significant change of the generator temperature can also be an indicator of the system failure. Continuous monitoring of vibrations, temperature, humidity, and gases is therefore mandatory. The high electromagnetic fields in the generators impose the use of non-conductive devices in order to prevent electromagnetic interferences and to electrically isolate the sensing element to the electronic readout. Metal-free sensors are good candidates for such systems since they are immune to very strong electromagnetic fields and given the fact that they are non-conductive. We have realized miniature optical accelerometer and temperature sensors for a remote sensing of the harsh environments using the common, inexpensive silicon Micro Electro-Mechanical System (MEMS) platform. Both devices show highly linear response. The accelerometer has a deviation within 1% from the linear fit when tested in a range 0 – 40 g. The temperature sensor can provide the measurement accuracy better than 1 °C in a range 20 – 150 °C. The design of other type of sensors for the environments with high electromagnetic interferences has also been discussed.

Keywords: Accelerometer, harsh environment, optical MEMS, pressure sensor, remote sensing, temperature sensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1083
134 Experimental Investigation and Sensitivity Analysis for the Effects of Fracture Parameters to the Conductance Properties of Laterite

Authors: Bai Wei, Kong Ling-Wei, Guo Ai-Guo

Abstract:

This experiment discusses the effects of fracture parameters such as depth, length, width, angle and the number of the fracture to the conductance properties of laterite using the DUK-2B digital electrical measurement system combined with the method of simulating the fractures. The results of experiment show that the changes of fracture parameters produce effects to the conductance properties of laterite. There is a clear degressive period of the conductivity of laterite during increasing the depth, length, width, or the angle and the quantity of fracture gradually. When the depth of fracture exceeds the half thickness of the soil body, the conductivity of laterite shows evidently non-linear diminishing pattern and the amplitude of decrease tends to increase. The length of fracture has fewer effects than the depth to the conductivity. When the width of fracture reaches some fixed values, the change of the conductivity is less sensitive to the change of the width, and at this time, the conductivity of laterite maintains at a stable level. When the angle of fracture is less than 45°, the decrease of the conductivity is more clearly as the angle increases. But when angle is more than 45°, change of the conductivity is relatively gentle as the angle increases. The increasing quantity of the fracture causes the other fracture parameters having great impact on the change of conductivity. When moisture content and temperature were unchanged, depth and angle of fractures are the major factors affecting the conductivity of laterite soil; quantity, length, and width are minor influencing factors. The sensitivity of fracture parameters affect conductivity of laterite soil is: depth >angles >quantity >length >width.

Keywords: laterite, fracture parameters, conductance properties, conductivity, uniform design, sensitivity analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1390
133 Attitudes of Academic Staff towards the Use of Information Communication Technology as a Pedagogical Tool for Effective Teaching in FCT College of Education, Zuba-Abuja, Nigeria

Authors: Salako Emmanuel Adekunle

Abstract:

With numerous advantages of ICT in teaching such as using images to improve the retentive memory of students, academic staff is yet to deliver instructions adequately and effectively due to no power supply, lack of technical supports and non-availability of functional ICT tools. This study was conducted to investigate the attitudes of academic staff towards the use of information communication technology as a pedagogical tool for effective teaching in FCT College of Education, Zuba-Abuja, Nigeria. A sample of 200 academic staff from five schools/faculties was involved in the study. The respondents were selected by using simple random sampling technique (SRST). A questionnaire was developed and validated by the experts in Measurement and Evaluation, and reliability co-efficient of 0.85 was obtained. It was used to gather relevant data from the respondents. This study revealed that the respondents had positive attitudes towards the use of ICT as a pedagogical tool for effective teaching. Also, the uses of ICT by the academic staff included: to encourage closer relationship for attainment of higher academic, and to deliver instructions effectively. The study also revealed that there is a significant relationship between the attitudes and the uses of ICT by the academic staff. Based on these findings, some recommendations were made which include: power supply should be provided to operate ICT facilities for effective teaching, and technical assistance on ICT usage for effective delivery of instructions should be provided among other recommendations.

Keywords: Academic staff, attitudes, information communication technology, pedagogical tool, teaching and use.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 946
132 Smart Energy Consumers: An Empirical Investigation on the Intention to Adopt Innovative Consumption Behaviour

Authors: Cecilia Perri, Vincenzo Corvello

Abstract:

The aim of the present study is to investigate consumers' determinants of intention toward the adoption of Smart Grid solutions and technologies. Ajzen's Theory of Planned Behaviour (TPB) model is applied and tested to explain the formation of such adoption intention. An exogenous variable, taking into account the resistance to change of individuals, was added to the basic model. The elicitation study allowed obtaining salient modal beliefs, which were used, with the support of literature, to design the questionnaire. After the screening phase, data collected from the main survey were analysed for evaluating measurement model's reliability and validity. Consistent with the theory, the results of structural equation analysis revealed that attitude, subjective norm, and perceived behavioural control positively, which affected the adoption intention. Specifically, the variable with the highest estimate loading factor was found to be the perceived behavioural control, and, the most important belief related to each construct was determined (e.g., energy saving was observed to be the most significant belief linked with attitude). Further investigation indicated that the added exogenous variable has a negative influence on intention; this finding confirmed partially the hypothesis, since this influence was indirect: such relationship was mediated by attitude. Implications and suggestions for future research are discussed.

Keywords: Adoption of innovation, consumers behaviour, energy management, smart grid, theory of planned behaviour.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2063
131 Dynamic Fault Diagnosis for Semi-Batch Reactor under Closed-Loop Control via Independent Radial Basis Function Neural Network

Authors: Abdelkarim M. Ertiame, D. W. Yu, D. L. Yu, J. B. Gomm

Abstract:

In this paper, a robust fault detection and isolation (FDI) scheme is developed to monitor a multivariable nonlinear chemical process called the Chylla-Haase polymerization reactor, when it is under the cascade PI control. The scheme employs a radial basis function neural network (RBFNN) in an independent mode to model the process dynamics, and using the weighted sum-squared prediction error as the residual. The Recursive Orthogonal Least Squares algorithm (ROLS) is employed to train the model to overcome the training difficulty of the independent mode of the network. Then, another RBFNN is used as a fault classifier to isolate faults from different features involved in the residual vector. Several actuator and sensor faults are simulated in a nonlinear simulation of the reactor in Simulink. The scheme is used to detect and isolate the faults on-line. The simulation results show the effectiveness of the scheme even the process is subjected to disturbances and uncertainties including significant changes in the monomer feed rate, fouling factor, impurity factor, ambient temperature, and measurement noise. The simulation results are presented to illustrate the effectiveness and robustness of the proposed method.

Keywords: Robust fault detection, cascade control, independent RBF model, RBF neural networks, Chylla-Haase reactor, FDI under closed-loop control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1785
130 Optimizing and Evaluating Performance Quality Control of the Production Process of Disposable Essentials Using Approach Vague Goal Programming

Authors: Hadi Gholizadeh, Ali Tajdin

Abstract:

To have effective production planning, it is necessary to control the quality of processes. This paper aims at improving the performance of the disposable essentials process using statistical quality control and goal programming in a vague environment. That is expressed uncertainty because there is always a measurement error in the real world. Therefore, in this study, the conditions are examined in a vague environment that is a distance-based environment. The disposable essentials process in Kach Company was studied. Statistical control tools were used to characterize the existing process for four factor responses including the average of disposable glasses’ weights, heights, crater diameters, and volumes. Goal programming was then utilized to find the combination of optimal factors setting in a vague environment which is measured to apply uncertainty of the initial information when some of the parameters of the models are vague; also, the fuzzy regression model is used to predict the responses of the four described factors. Optimization results show that the process capability index values for disposable glasses’ average of weights, heights, crater diameters and volumes were improved. Such increasing the quality of the products and reducing the waste, which will reduce the cost of the finished product, and ultimately will bring customer satisfaction, and this satisfaction, will mean increased sales.

Keywords: Goal programming, quality control, vague environment, disposable glasses’ optimization, fuzzy regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 989
129 Mechanical Properties of Powder Metallurgy Processed Biodegradable Zn-Based Alloy for Biomedical Application

Authors: Maruf Yinka Kolawole, Jacob Olayiwola Aweda, Farasat Iqbal, Asif Ali, Sulaiman Abdulkareem

Abstract:

Zinc is a non-ferrous metal with potential application in orthopaedic implant materials. However, its poor mechanical properties were major challenge to its application. Therefore, this paper studies the mechanical properties of biodegradable Zn-based alloy for biomedical application. Pure zinc powder with varying (0, 1, 2, 3 & 6) wt% of magnesium powders were ball milled using ball-to-powder ratio (B:P) of 10:1 at 350 rpm for 4 hours. The resulting milled powders were compacted and sintered at 300 MPa and 350 °C respectively. Microstructural, phase and mechanical properties analyses were performed following American standard of testing and measurement. The results show that magnesium has influence on the mechanical properties of zinc. The compressive strength, hardness and elastic modulus of 210 ± 8.878 MPa, 76 ± 5.707 HV and 45 ± 11.616 GPa respectively as obtained in Zn-2Mg alloy were optimum and meet the minimum requirement of biodegradable metal for orthopaedics application. These results indicate an increase of 111, 93 and 93% in compressive strength, hardness and elastic modulus respectively as compared to pure zinc. The increase in mechanical properties was adduced to effectiveness of compaction pressure and intermetallic phase formation within the matrix resulting in high dislocation density for improving strength. The study concluded that, Zn-2Mg alloy with optimum mechanical properties can therefore be considered a potential candidate for orthopaedic application.

Keywords: Biodegradable metal, biomedical application mechanical properties, powder metallurgy, zinc.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 898
128 The Effectiveness of Solution-Focused Group Therapy on Improving Depressed Mothers of Child Abuser Families

Authors: Roya Maqami, Kaveh Qaderi Bagajan, Mohammad Mahdi Yousefi, Saeed Moradi

Abstract:

The purpose of this study is to investigate the efficacy of solution-focused group therapy on improving the depressed mothers of child abuser families. This study was carried out in the form of a semi-pilot, pre-test and post-test on two groups (experimental and control). Subjects include all mothers and their children that are the members of Shush and Naser Khosro child home. Beck Depression Inventory and Child Trauma Questionnaire were used to collect data. First, child abuse questionnaire was completed by children, Then Beck Depression Inventory was completed by their mothers that 22 of them were recognized as depressed and randomly divided in two groups of experimental and control. After applying pre-test for both of these groups, the intervention of solution- focused group therapy was performed in five sessions on experimental group. Finally, post-test was applied on both groups and subsequently in a month, follow-up test was performed. T-test, multivariate variance, and repeated measurement analysis of variance were used to analyze the data. According to the findings, it can be concluded that this therapy leads to the improvement of depressed mother's mood. As a result, the intervention of solution-focused group therapy is useful in order to improve the depressing mood of mothers of child abuser families.

Keywords: Child Abuse, Depressed Mothers, Child Abuser Families, Solution-focused Group Therapy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1724
127 The Efficacy of Andrographis paniculata and Chromolaena odorata Plant Extract against Malaria Parasite

Authors: Funmilola O. Omoya, Abdul O. Momoh

Abstract:

Malaria constitutes one of the major health problems in Nigeria. One of the reasons attributed for the upsurge was the development of resistance of Plasmodium falciparum and the emergence of multi-resistant strains of the parasite to anti-malaria drugs. A continued search for other effective, safe and cheap plantbased anti-malaria agents thus becomes imperative in the face of these difficulties. The objective of this study is therefore to evaluate the in vivo anti-malarial efficacy of ethanolic extracts of Chromolaena odorata and Androgaphis paniculata leaves. The two plants were evaluated for their anti-malaria efficacy in vivo in a 4-day curative test assay against Plasmodium berghei strain in mice. The group treated with 500mg/ml dose of ethanolic extract of A. paniculata plant showed parasite suppression with increase in Packed Cell Volume (PCV) value except day 3 which showed a slight decrease in PCV value. During the 4-day curative test, an increase in the PCV values, weight measurement and zero count of Plasmodium berghei parasite values was recorded after day 3 of drug administration. These results obtained in group treated with A. paniculata extract showed anti-malarial efficacy with higher mortality rate in parasitaemia count when compared with Chromolaena odorata group. These results justify the use of ethanolic extracts of A. paniculata plant as medicinal herb used in folklore medicine in the treatment of malaria.

Keywords: Anti-malaria, Curative, Plant-based anti-malaria agents.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2017
126 Design of Multiband Microstrip Antenna Using Stepped Cut Method for WLAN/WiMAX and C/Ku-Band Applications

Authors: Ahmed Boutejdar, Bishoy I. Halim, Soumia El Hani, Larbi Bellarbi, Amal Afyf

Abstract:

In this paper, a planar monopole antenna for multi band applications is proposed. The antenna structure operates at three operating frequencies at 3.7, 6.2, and 13.5 GHz which cover different communication frequency ranges. The antenna consists of a quasi-modified rectangular radiating patch with a partial ground plane and two parasitic elements (open-loop-ring resonators) to serve as coupling-bridges. A stepped cut at lower corners of the radiating patch and the partial ground plane are used, to achieve the multiband features. The proposed antenna is manufactured on the FR4 substrate and is simulated and optimized using High Frequency Simulation System (HFSS). The antenna topology possesses an area of 30.5 x 30 x 1.6 mm3. The measured results demonstrate that the candidate antenna has impedance bandwidths for 10 dB return loss and operates from 3.80 – 3.90 GHz, 4.10 – 5.20 GHz, 11.2 – 11.5 GHz and from 12.5 – 14.0 GHz, which meet the requirements of the wireless local area network (WLAN), worldwide interoperability for microwave access (WiMAX), C- (Uplink) and Ku- (Uplink) band applications. Acceptable agreement is obtained between measurement and simulation results. Experimental results show that the antenna is successfully simulated and measured, and the tri-band antenna can be achieved by adjusting the lengths of the three elements and it gives good gains across all the operation bands.

Keywords: Planar monopole antenna, FR4 substrate, HFSS, WLAN, WiMAX, C & Ku.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 917
125 Empirical Evidence on Equity Valuation of Thai Firms

Authors: Somchai Supattarakul, Anya Khanthavit

Abstract:

This study aims at providing empirical evidence on a comparison of two equity valuation models: (1) the dividend discount model (DDM) and (2) the residual income model (RIM), in estimating equity values of Thai firms during 1995-2004. Results suggest that DDM and RIM underestimate equity values of Thai firms and that RIM outperforms DDM in predicting cross-sectional stock prices. Results on regression of cross-sectional stock prices on the decomposed DDM and RIM equity values indicate that book value of equity provides the greatest incremental explanatory power, relative to other components in DDM and RIM terminal values, suggesting that book value distortions resulting from accounting procedures and choices are less severe than forecast and measurement errors in discount rates and growth rates. We also document that the incremental explanatory power of book value of equity during 1998-2004, representing the information environment under Thai Accounting Standards reformed after the 1997 economic crisis to conform to International Accounting Standards, is significantly greater than that during 1995-1996, representing the information environment under the pre-reformed Thai Accounting Standards. This implies that the book value distortions are less severe under the 1997 Reformed Thai Accounting Standards than the pre-reformed Thai Accounting Standards.

Keywords: Dividend Discount Model, Equity Valuation Model, Residual Income Model, Thai Stock Market

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1847
124 Characterisation of Wind-Driven Ventilation in Complex Terrain Conditions

Authors: Daniel Micallef, Damien Bounaudet, Robert N. Farrugia, Simon P. Borg, Vincent Buhagiar, Tonio Sant

Abstract:

The physical effects of upstream flow obstructions such as vegetation on cross-ventilation phenomena of a building are important for issues such as indoor thermal comfort. Modelling such effects in Computational Fluid Dynamics simulations may also be challenging. The aim of this work is to establish the cross-ventilation jet behaviour in such complex terrain conditions as well as to provide guidelines on the implementation of CFD numerical simulations in order to model complex terrain features such as vegetation in an efficient manner. The methodology consists of onsite measurements on a test cell coupled with numerical simulations. It was found that the cross-ventilation flow is highly turbulent despite the very low velocities encountered internally within the test cells. While no direct measurement of the jet direction was made, the measurements indicate that flow tends to be reversed from the leeward to the windward side. Modelling such a phenomenon proves challenging and is strongly influenced by how vegetation is modelled. A solid vegetation tends to predict better the direction and magnitude of the flow than a porous vegetation approach. A simplified terrain model was also shown to provide good comparisons with observation. The findings have important implications on the study of cross-ventilation in complex terrain conditions since the flow direction does not remain trivial, as with the traditional isolated building case.

Keywords: Complex terrain, cross-ventilation, wind driven ventilation, Computational Fluid Dynamics (CFD), wind resource.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 843
123 Microstructure, Compressive Strength and Transport Properties of High Strength Self-Compacting Concretes Containing Natural Pumice and Zeolite

Authors: Kianoosh Samimi, Siham Kamali-Bernard, Ali Akbar Maghsoudi

Abstract:

Due to the difficult placement and vibration between reinforcements of reinforced concrete and the defects that it may cause, the use of self-compacting concrete (SCC) is becoming more widespread. Ordinary Portland Cement (OPC) is the most widely used binder in the construction industry. However, the manufacture of this cement results in a significant amount of CO2 being released, which is detrimental to the environment. Thus, an alternative to reduce the cost of SCC is the use of more economical and environmental mineral additives in partial or total substitution of Portland cement. Our study is in this context and aims to develop SCCs both economic and ecological. Two natural pozzolans such as pumice and zeolite are chosen in this research. This research tries to answer questions including the microstructure of the two types of natural pozzolan and their influence on the mechanical properties as well as on the transport property of SCC. Based on the findings of this study, the studied zeolite is a clinoptilolite that presents higher pozzolan activity compared to pumice. However, the use of zeolite decreases the compressive strength of SCC composites. On the contrary, the compressive strength in SCC containing of pumice increases at both early and long term ages with a remarkable increase at long term. A correlation is obtained between the compressive strength with permeable pore and capillary absorption. Also, the results concerning compressive strength and transport property are well justified by evaporable and non-evaporable water content measurement. This paper shows that the substitution of Portland cement by 15% of pumice or 10% of zeolite in HSSCC is suitable in all aspects. 

Keywords: SCC, concrete, pumice, zeolite, durability, transport.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 832
122 Evaluation of the Power Generation Effect Obtained by Inserting a Piezoelectric Sheet in the Backlash Clearance of a Circular Arc Helical Gear

Authors: Barenten Suciu, Yuya Nakamoto

Abstract:

Power generation effect, obtained by inserting a piezo- electric sheet in the backlash clearance of a circular arc helical gear, is evaluated. Such type of screw gear is preferred since, in comparison with the involute tooth profile, the circular arc profile leads to reduced stress-concentration effects, and improved life of the piezoelectric film. Firstly, geometry of the circular arc helical gear, and properties of the piezoelectric sheet are presented. Then, description of the test-rig, consisted of a right-hand thread gear meshing with a left-hand thread gear, and the voltage measurement procedure are given. After creating the tridimensional (3D) model of the meshing gears in SolidWorks, they are 3D-printed in acrylonitrile butadiene styrene (ABS) resin. Variation of the generated voltage versus time, during a meshing cycle of the circular arc helical gear, is measured for various values of the center distance. Then, the change of the maximal, minimal, and peak-to-peak voltage versus the center distance is illustrated. Optimal center distance of the gear, to achieve voltage maximization, is found and its significance is discussed. Such results prove that the contact pressure of the meshing gears can be measured, and also, the electrical power can be generated by employing the proposed technique.

Keywords: Power generation, circular arc helical gear, piezo- electric sheet, contact problem, optimal center distance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 658
121 Verification of Sr-90 Determination in Water and Spruce Needles Samples Using IAEA-TEL-2016-04 ALMERA Proficiency Test Samples

Authors: S. Visetpotjanakit, N. Nakkaew

Abstract:

Determination of 90Sr in environmental samples has been widely developed with several radioanlytical methods and radiation measurement techniques since 90Sr is one of the most hazardous radionuclides produced from nuclear reactors. Liquid extraction technique using di-(2-ethylhexyl) phosphoric acid (HDEHP) to separate and purify 90Y and Cherenkov counting using liquid scintillation counter to determine 90Y in secular equilibrium to 90Sr was developed and performed at our institute, the Office of Atoms for Peace. The approach is inexpensive, non-laborious, and fast to analyse 90Sr in environmental samples. To validate our analytical performance for the accurate and precise criteria, determination of 90Sr using the IAEA-TEL-2016-04 ALMERA proficiency test samples were performed for statistical evaluation. The experiment used two spiked tap water samples and one naturally contaminated spruce needles sample from Austria collected shortly after the Chernobyl accident. Results showed that all three analyses were successfully passed in terms of both accuracy and precision criteria, obtaining “Accepted” statuses. The two water samples obtained the measured results of 15.54 Bq/kg and 19.76 Bq/kg, which had relative bias 5.68% and -3.63% for the Maximum Acceptable Relative Bias (MARB) 15% and 20%, respectively. And the spruce needles sample obtained the measured results of 21.04 Bq/kg, which had relative bias 23.78% for the MARB 30%. These results confirm our analytical performance of 90Sr determination in water and spruce needles samples using the same developed method.

Keywords: ALMERA proficiency test, Cherenkov counting, determination of 90Sr, environmental samples.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 807
120 Performance Analysis of Air-Tunnel Heat Exchanger Integrated into Raft Foundation

Authors: Chien-Yeh Hsu, Yuan-Ching Chiang, Zi-Jie Chien, Sih-Li Chen

Abstract:

In this study, a field experiment and performance analysis of air-tunnel heat exchanger integrated with water-filled raft foundation of residential building were performed. In order to obtain better performance, conventional applications of air-tunnel inevitably have high initial cost or issues about insufficient installation space. To improve the feasibility of air tunnel heat exchanger in high-density housing, an integrated system consisting of air pipes immersed in the water-filled raft foundation was presented, taking advantage of immense amount of water and relatively stable temperature in raft foundation of building. The foundation-integrated air tunnel was applied to a residential building located in Yilan, Taiwan, and its thermal performance was measured in the field experiment. The results indicated that the cooling potential of integrated system was close to the potential of soil-based EAHE at 2 m depth or deeper. An analytical model based on thermal resistance method was validated by measurement results, and was used to carry out the dimensioning of foundation-integrated air tunnel. The discrepancies between calculated value and measured data were less than 2.7%. In addition, the return-on-investment with regard to thermal performance and economics of the application was evaluated. Because the installation for air tunnel is scheduled in the building foundation construction, the utilization of integrated system spends less construction cost compare to the conventional earth-air tunnel.

Keywords: Air tunnel, ground heat exchanger, raft foundation, residential building.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1375
119 Estimated Human Absorbed Dose of 111In-BPAMD as a New Bone-Seeking SPECT-Imaging Agent

Authors: H. Yousefnia, S. Zolghadri

Abstract:

An early diagnosis of bone metastasis is very important for making a right decision on a subsequent therapy. One of the most important steps to be taken initially, for developing a new radiopharmaceutical is the measurement of organ radiation exposure dose. In this study, the dosimetric studies of a novel agent for SPECT-imaging of the bone metastasis, 111In-(4- {[(bis(phosphonomethyl))carbamoyl]methyl}7,10bis(carboxymethyl) -1,4,7,10-tetraazacyclododec-1-yl) acetic acid (111In-BPAMD) complex, have been carried out to estimate the dose in human organs based on the data derived from mice. The radiolabeled complex was prepared with high radiochemical purity in the optimal conditions. Biodistribution studies of the complex was investigated in the male Syrian mice at the selected times after injection (2, 4, 24 and 48 h). The human absorbed dose estimation of the complex was made based on data derived from the mice by the radiation absorbed dose assessment resource (RADAR) method. 111In-BPAMD complex was prepared with high radiochemical purity >95% (ITLC) and specific activities of 2.85 TBq/mmol. Total body effective absorbed dose for 111In-BPAMD was 0.205 mSv/MBq. This value is comparable to the other 111In clinically used complexes. The results show that the dose with respect to the critical organs is satisfactory within the acceptable range for diagnostic nuclear medicine procedures. Generally, 111In-BPAMD has interesting characteristics and it can be considered as a viable agent for SPECT-imaging of the bone metastasis in the near future.

Keywords: In-111, BPAMD, absorbed dose, RADAR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2162
118 Feature Reduction of Nearest Neighbor Classifiers using Genetic Algorithm

Authors: M. Analoui, M. Fadavi Amiri

Abstract:

The design of a pattern classifier includes an attempt to select, among a set of possible features, a minimum subset of weakly correlated features that better discriminate the pattern classes. This is usually a difficult task in practice, normally requiring the application of heuristic knowledge about the specific problem domain. The selection and quality of the features representing each pattern have a considerable bearing on the success of subsequent pattern classification. Feature extraction is the process of deriving new features from the original features in order to reduce the cost of feature measurement, increase classifier efficiency, and allow higher classification accuracy. Many current feature extraction techniques involve linear transformations of the original pattern vectors to new vectors of lower dimensionality. While this is useful for data visualization and increasing classification efficiency, it does not necessarily reduce the number of features that must be measured since each new feature may be a linear combination of all of the features in the original pattern vector. In this paper a new approach is presented to feature extraction in which feature selection, feature extraction, and classifier training are performed simultaneously using a genetic algorithm. In this approach each feature value is first normalized by a linear equation, then scaled by the associated weight prior to training, testing, and classification. A knn classifier is used to evaluate each set of feature weights. The genetic algorithm optimizes a vector of feature weights, which are used to scale the individual features in the original pattern vectors in either a linear or a nonlinear fashion. By this approach, the number of features used in classifying can be finely reduced.

Keywords: Feature reduction, genetic algorithm, pattern classification, nearest neighbor rule classifiers (k-NNR).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1728
117 Experimental Investigation of Gas Bubble Behaviours in a Domestic Heat Pump Water Heating System

Authors: J. B. Qin, X. H. Jiang, Y. T. Ge

Abstract:

The growing awareness of global warming potential has internationally aroused interest and demand in reducing greenhouse gas emissions produced by human activity. Much national energy in the UK had been consumed in the residential sector mainly for space heating and domestic hot water production. Currently, gas boilers are mostly applied in the domestic water heating which contribute significantly to excessive CO2 emissions and consumption of primary energy resources. The issues can be solved by popularizing heat pump systems that are attributable to higher performance efficiency than those of traditional gas boilers. Even so, the heat pump system performance can be further enhanced if the dissolved gases in its hot water circuit can be efficiently discharged.  To achieve this target, the bubble behaviors in the heat pump water heating system need to be extensively investigated. In this paper, by varying different experimental conditions, the effects of various heat pump hot water side parameters on gas microbubble diameters were measured and analyzed. Correspondingly, the effect of each parameter has been investigated. These include varied system pressures, water flow rates, saturation ratios and heat outputs. The results measurement showed that the water flow rate is the most significant parameter to influence on gas microbubble productions. The research outcomes can significantly contribute to the understanding of gas bubble behaviors at domestic heat pump water heating systems and thus the efficient way for the discharging of the associated dissolved gases.  

Keywords: Dissolved gases in water, heat pump, domestic water heating system, microbubble formation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 793