Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30234
Mechanical Properties of Powder Metallurgy Processed Biodegradable Zn-Based Alloy for Biomedical Application

Authors: Maruf Yinka Kolawole, Jacob Olayiwola Aweda, Farasat Iqbal, Asif Ali, Sulaiman Abdulkareem


Zinc is a non-ferrous metal with potential application in orthopaedic implant materials. However, its poor mechanical properties were major challenge to its application. Therefore, this paper studies the mechanical properties of biodegradable Zn-based alloy for biomedical application. Pure zinc powder with varying (0, 1, 2, 3 & 6) wt% of magnesium powders were ball milled using ball-to-powder ratio (B:P) of 10:1 at 350 rpm for 4 hours. The resulting milled powders were compacted and sintered at 300 MPa and 350 °C respectively. Microstructural, phase and mechanical properties analyses were performed following American standard of testing and measurement. The results show that magnesium has influence on the mechanical properties of zinc. The compressive strength, hardness and elastic modulus of 210 ± 8.878 MPa, 76 ± 5.707 HV and 45 ± 11.616 GPa respectively as obtained in Zn-2Mg alloy were optimum and meet the minimum requirement of biodegradable metal for orthopaedics application. These results indicate an increase of 111, 93 and 93% in compressive strength, hardness and elastic modulus respectively as compared to pure zinc. The increase in mechanical properties was adduced to effectiveness of compaction pressure and intermetallic phase formation within the matrix resulting in high dislocation density for improving strength. The study concluded that, Zn-2Mg alloy with optimum mechanical properties can therefore be considered a potential candidate for orthopaedic application.

Keywords: powder metallurgy, zinc, Biodegradable metal, biomedical application mechanical properties

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 87


[1] D. Arcos, A. R. Boccaccini, M. Bohner, A. Díez-Pérez, M. Epple, E. Gomez-Barrena & M. Vallet-Regí, “The relevance of biomaterials to the prevention and treatment of osteoporosis,”. Acta biomaterialia,” Vol.10 No5, pp.1793-1805, 2014.
[2] B. Denkena & A. Lucas, “Biocompatible magnesium alloys as absorbable implant materials–adjusted surface and subsurface properties by machining processes,” CIRPAnnals-Manufacturing Technology, Vol.56 No1, pp.113-116, 2007.
[3] X. Li, C. Chu & P. KChu, “Effects of external stress on biodegradable orthopedic materials: a review,” Bioactive materials, Vol.1 No1, pp.77-84, 2016,
[4] J. He, F.L. He, D.W. Li, Y.L. Liu, Y.Y. Liu, Y.J. Ye & D.C. Yin, “Advances in Fe-based biodegradable metallic materials,” Royal Society of Chemistry Advances, Vol.6 No114, pp.112819-112838, 2016.
[5] C. Shen, X. Liu, B. Fan, P. Lan, F. Zhou, X. Li, H. Wang, X. Xiao, L. Li and S. Zhao, “Mechanical properties, in vitro degradation behaviour, hemocompactibilty and cytotoxicity evaluation of Zn-1.2 Mg alloy for biodegradable implants,” Royal Society of Chemistry Advance, Vol.6, pp.86410-86419, 2016.
[6] L. G. Katarivas, Y. Ventura, J. Goldman, R. Vago and E. Aghion, “Cytotoxic characteristics of biodegradable EW10X04 Mg alloy after nd coating and subsequent heat treatment,” Material Science and Engineering C, Vol.62, pp.752-761, 2016.
[7] L. G. Katarivas, J. Goldman and E. Aghion, “The Prospects of Zinc as a structural material for biodegradable implants- A Review Paper,” Metals, Vol.7, pp. 402-419, 2017.
[8] E. Aghion, G. Levy and S. Ovadia, “In vivo behaviour of biodegradable Mg-Nd-Y-Zr-Ca alloy,” Journal of material Science, Vol.23, pp.805 -812, 2012.
[9] M. Dehestani, E. Adolfsson and L. A. Stanciu, “Mechanical properties and corrosion behavior of powder metallurgy iron-hydroxyapatite composites for biodegradable implant applications,” Materials and Design, Vol.109, pp.556-569, 2016.
[10] X. Lin, S. Yang, K. B. Lai., H. Yang, T.J. Webster and Y. Lei, “Orthopedic implant biomaterials with both osteogenic and anti-infection capacities and associated in vivo evaluated methods,” Nanomedicine, Vol.13, pp.123 –142, 2017.
[11] H. Li, Y. Zheng and L. Qin, “Progress of biodegradable metals: Progress in natural science,” Materials International, Vol.24, pp.414-422, 2014.
[12] Y.H. An, S. K. Woolf and R. J. Friedman, “Preclinical in vivo evaluation of orthopedic bioabsorbable devices,” Biomaterials, Vol. 21, pp.2635-2652, 2000.
[13] M. B. Kannan, C. Moore, S. Saptarshi, S. Somasundaram, M. Rahuma and A. L. Lopata A.L., “Bicompatibility and biodegradation studies of a commercial zinc alloy for temporary mini-implant applications,” Scientific reports, Vol. 7, pp.15605-15613, 2017.
[14] F. Witte, “The history of biodegradable magnesium implants: a review,” Acta Biomaterials, Vol.6, pp.1680-1692, 2010.
[15] W. Jin, G. Wu, H. Feng, W. Wang, X. Zhang and P. K. Chu, “Improvement of corrosion of corrosion resistance and biocompatibility of rare-earth WE43 magnesium alloy by neodymium self-ion implantation,”, In Corrosion Science, Vol.94, pp.142-155, 2015.
[16] Y. Zheng, B. Liu and X. Gu, “Research progress in biodegradable metallic materials for medical application,” Materials Review, Vol.1, (003), pp 1-10, 2009.
[17] A. Celarek, T., Kraus, E. K. Tschegg, S. F. Fischerauer and S. Stanzl-Tschegg, “Crystalline and amorphous magnesium alloys promising candidates for bioresorbable osteosynthesis implants? Material Science and Engineering C, Vol.32, pp.1503-1510, 2012.
[18] K. M. Hambidge and N.F. Krebs, “Zinc deficiency: A special challenge,” Journal of nutrition, Vol.137, pp.1101-1105, 2007.
[19] A. Kafri, S. Ovadia, J. Goldman, J. Drelich and E. Aghion, “The suitability of Zn-1.3%Fe alloy as a biodegradable implant material,” Metals, Vol.8(153), pp. 153-158, 2018.
[20] C. K. Ailasanathan, G. Chandrasekar, N. Balasubramaniam, K. Chenniyappan and V. Boomiraj, “Analysis of green density, sintered density and void content percentage of AZ91 D Magnesium Alloy- Fly Ash Composites fabricated using powder metallurgy route,” International Journal of Applied Engineering Research, Vol.10 No39, pp.29861-29866, 2015.
[21] M. Javanbakht, M. J. Hadianfard & E. Salahinejad, “Microstructure and mechanical properties of a new group of nanocrystalline medical-grade stainless steels prepared by powder metallurgy,” Journal of Alloys and Compounds, Vol.624, pp.17-21, 2015.
[22] M. Krystýnová, P. Doležal, S. Fintová, M. Březina, J. Zapletal, & J. Wasserbauer, “Preparation and characterization of zinc materials prepared by powder metallurgy,” Metals, Vol. 7 No10, pp.396-404, 2017.
[23] P. S. Bagha-Sotouchleh, S. Khaleghpanah, S. Sheibani, M. Khakbiz, & A. Zakeri, “Characterization of nanostructured biodegradable Zn-Mn alloy synthesized by mechanical alloying,” Journal of Alloys and Compounds, Vol.735, pp.1319-1327, 2018.
[24] K. A. Nazari, A. Nouri & T. Hilditch, “Mechanical properties and microstructure of powder metallurgy Ti–xNb–yMo alloys for implant materials,” Materials & Design, Vol.88, pp.1164-1174, 2015.
[25] M. M. Yusof & H. Zuhailawati, “The effect of compaction pressure for on properties of binary and ternary magnesium alloys,” In AIP Conference Proceedings, Vol. 1865, No. 1, p. 030005) AIP Publishing, 2017.
[26] A. Tahmasebifar, S. M. Kayhan, Z. Evis, A. Tezcaner, H. Çinici, & M. Koç, “Mechanical, electrochemical and biocompatibility evaluation of AZ91D magnesium alloy as a biomaterial”, Journal of Alloys and Compounds, Vol.687, pp.906-919, 2016.
[27] Standard, A. S. T. M. E9-09, “Standard test methods of compression testing of metallic materials at room temperature”, 1990 Annual Book of ASTM Standards, ASTM, West Conshohocken, PA, pp.98-105, 2018.
[28] Z. Wang, Y. Ma, J. Wei, X. Chen, L. Cao, W. Weng, & J. Su, “Effects of sintering temperature on surface morphology/microstructure, in vitro degradability, mineralization and osteoblast response to Magnesium Phosphate as biomedical material,” Scientific Reports, Vol.7 No1, pp. 823-829, 2017.
[29] J. Capek, E. Jablonska, J. Lipov & T. F. Kubatik, “Preparation and characterization of porous zinc prepared by spark plasma sintering as a material for biodegradable scaffolds,” Materials Chemistry and Physics, Vol.203, pp. 249-258, 2018.
[30] P. Li, C. Schille, E. Schweizer, F. Rupp, A. Heisis, C. Legner, U. E. Klotz, J. Geis-Gerstorfer and L. Scheideler, “Mechanical characteristics, In vitro degradation, cytotoxicity and antibacterial evaluation of Zn-4.0Ag alloy as a biodegradable material”, International Journal of Molecular sciences, Vol.19 No755, pp.1-15, 2018.
[31] K. Yamaguchi, N. Takakura, & S. Imatani, “Compaction and sintering characteristics of composite metal powders,” Journal of Materials Processing Technology, Vol.63 No1-3, pp.364-369, 1997.
[32] I. Aatthisugan, S. Muralidharan, S. Majumdar, A. R. Rose & D. S. Jebadurai, “Wear and mechanical properties of Al-6% Cu-X%Mg alloy fabricated by powder metallurgy,” In IOP Conference Series: Materials Science and Engineering, Vol. 402 No1, p.012106. IOP Publishing, Aug. 2018.
[33] L. F. Guleryuz, R. Ipek, I. Arıtman & S. Karaoglu, “Microstructure and mechanical properties of Zn-Mg alloys as implant materials manufactured by powder metallurgy method,” In AIP Conference Proceedings, Vol.1809 No1, p.020020, AIP Publishing, 2017.
[34] K. Kostov, N. Dulgerov, V. Angelova, H. Argirov, “The influence of thermo-mechanical regime on the superplasticity of alloy Zn-1,2 %Mn is investigated,” Journal Universal Chemical and Technological metallography, Vol.41, pp.361–364, 2006.
[35] J. Kubásek, D. Vojtěch, I. Pospíšilová, A. Michalcová, & J. Maixner, “Microstructure and mechanical properties of the micrograined hypoeutectic Zn–Mg alloy,” International Journal of Minerals, Metallurgy, and Materials, Vol.23 No10, pp.1167-1176, 2016.
[36] D. Vojtech, J. Kubasek, J. Capek & I. Pospisilova, “Comparative mechanical and corrosion studies on magnesium, zinc and iron alloys as biodegradable metals,” Material. Technology, Vol.49, pp.877-882, 2015.
[37] X. N. Gu, & Y. F. Zheng, “A review on magnesium alloys as biodegradable materials,” Frontiers of Materials Science in China, Vol.4 No2, pp.111-115, 2010.