
 

 

 
Abstract—An early diagnosis of bone metastasis is very 

important for making a right decision on a subsequent therapy. One 
of the most important steps to be taken initially, for developing a new 
radiopharmaceutical is the measurement of organ radiation exposure 
dose. In this study, the dosimetric studies of a novel agent for 
SPECT-imaging of the bone metastasis, 111In-(4-
{[(bis(phosphonomethyl))carbamoyl]methyl}7,10bis(carboxymethyl)
-1,4,7,10-tetraazacyclododec-1-yl) acetic acid (111In-BPAMD) 
complex, have been carried out to estimate the dose in human organs 
based on the data derived from mice. The radiolabeled complex was 
prepared with high radiochemical purity in the optimal conditions. 
Biodistribution studies of the complex was investigated in the male 
Syrian mice at the selected times after injection (2, 4, 24 and 48 h). 
The human absorbed dose estimation of the complex was made based 
on data derived from the mice by the radiation absorbed dose 
assessment resource (RADAR) method. 

111In-BPAMD complex was prepared with high radiochemical 
purity >95% (ITLC) and specific activities of 2.85 TBq/mmol. Total 
body effective absorbed dose for 111In-BPAMD was 0.205 
mSv/MBq. This value is comparable to the other 111In clinically used 
complexes. The results show that the dose with respect to the critical 
organs is satisfactory within the acceptable range for diagnostic 
nuclear medicine procedures. Generally, 111In-BPAMD has 
interesting characteristics and it can be considered as a viable agent 
for SPECT-imaging of the bone metastasis in the near future. 
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I. INTRODUCTION 

KELETAL metastases are the most common malignant 
tumors in the skeleton involving up to 70% of patients 

with prostate and breast cancers, and up to 30% of those with 
cancers of the lung, bladder, and thyroid [1], [2]. Imaging 
plays an important role in the detection, diagnosis, 
prognostication, treatment planning, and follow-up monitoring 
of the bone metastasis. Capturing images is of particular 
importance for a crucial decision on a subsequent therapy [3]. 
However, 99mTc-methylene diphosphonate (MDP) is a well-
established tracer for the diagnosis of the bone metastasis in 
nuclear medicine domain using SPECT imaging [4], but the 
search for developing new SPECT radiotracers can be 
especially important nowadays because of 99mTc shortage. 
Nowadays, (4-{[(bis(phosphonomethyl))carbamoyl]methyl}-
7,10-bis(carboxymethyl)-1,4,7,10-tetraazacyclododec-1-yl) 
acetic acid (BPAMD), as a new macrocyclic diphosphonate, 
has fulfilled some requirements and removed a number of 
restrictions of the first generation phosphonates, such as 
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EDTMP and HEDP. This complex, labeled with 68Ga, showed 
promising results such as very high target-to-soft-tissue ratios 
and ultrafast clearance [5]. 

The interesting physical properties of 111In [a cyclotron 
produced radionuclide with half-life of 2.8 days, decaying by 
electron capture (EC) with subsequent emission of gamma 
photons of 173 and 247 keV (89% and 94% intensity, 
respectively)] as well as its easy production and availability, 
make it an interesting nuclide for radiopharmaceutical 
research. Various carriers including bombesin [6], 
immunoglobulins [7] and HIgG [8] labeled with 111In have 
shown the usefulness of this radioisotope in the detection and 
diagnosis of infections and inflammatory lesions using single 
photon emission computed tomography (SPECT). 

The amount of energy is deposited in any organs by 
ionizing radiation termed absorbed dose, plays an important 
role in evaluating the risks associated with the administration 
of radiopharmaceuticals and thus the maximum amount of 
activity that should be undertaken [9]. Many resources for 
facilitating dose calculations are available, once appropriate 
biokinetic data are gathered in animal or human experiments 
[10]. In nuclear medicine, the most commonly used method 
these days for calculation of the internal absorbed dose 
estimates is the radiation dose assessment resource (RADAR) 
method [11]. 

In this research, the human absorbed dose of 111In‐BPAMD 
complex, as a possible SPECT imaging agent for the bone 
metastasis was estimated based on the data taken from the 
Syrian mice type by RADAR method.  

II.  MATERIALS AND METHODS 

The enriched cadmium-112 with purity of >99% was 
obtained from Merck (Darmstadt, Germany). BPAMD was 
prepared from ABX (Radeberg, Germany). All other chemical 
reagents were purchased from Sigma-Aldrich (Heidelberg, 
Germany). Whatman No. 2 paper was provided from 
Whatman (Buckinghamshire, U.K.). 30 MeV cyclotron 
(Cyclone 30, IBA, Belgium) was used for the production of 
111In via 112Cd(p,2n)111In reaction. Radio-chromatography and 
imaging studies were performed using a thin layer 
chromatography scanner (Bioscan AR2000, Paris, France) and 
a Dual Head SPECT system (DST-XL, SMV, Buc, France). 
The activity of the samples was measured by a p-type coaxial 
high-purity germanium (HPGe) detector (EGPC 80-200R) 
coupled with a multichannel analyzer card system (GC1020-
7500SL, Canberra, U. S. A.). Calculations were based on the 
172 keV peak for 111In. All values were expressed as mean ± 
standard deviation (Mean ± SD) and the data were compared 
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using student T-test. Statistical significance was defined as 
P<0.05. Animal studies were conducted in accordance with 
the United Kingdom Biological Council's Guidelines on the 
Use of Living Animals in Scientific Investigations, second 
edition. 

A. Production and Quality Control of 111InCl3 Solution  

In order to prepare Cd targets for the production, cadmium 
electroplating was performed on a copper surface. Indium-111 
chloride was prepared by 22 MeV proton bombardment of the 
cadmium target at a 30 MeV cyclotron, with a current of 100 
μA for 48 min (80 μAh). Indium-111 was eluted with 1 N HCl 
(25 mL) as 111InCl3 for labeling use. Radionuclidic purity of 
the final solution was carried out by counting in an HPGe 
detector for 1000 seconds. The concentrations of cadmium 
(from target material) and copper (from target support) were 
determined using polarography. The radiochemical purity of 
the 111InCl3 solution was checked by instant thin layer 
chromatography method (ITLC) in two solvent systems, 1 mM 
DTPA and 10% ammonium acetate:methanol mixture. 

B. Preparation and Quality Control of 111In-BPAMD  

In order to obtain maximum labeling yield, several 
experiments were carried out by the variation of different 
reaction parameters. In the optimal procedure, 1 mg of 
BPAMD was dissolved in 1 mL pure water and the aqueous 
solution was used for labeling studies. 75 L (130 nmol) of 
the stock solution was added to the vial containing 370 MBq 
of 111InCl3. The pH of the reaction mixture was adjusted to 6 
and the mixture was incubated for 60 min at 100 C. Different 
chromatographic systems were used for the detection of the 
radiolabeled compound from the free indium cation. 
NH4OH:MeOH:H2O (0.2:2:4) solvent system was considered 
as the best ITLC mobile phase. 

C. Biodistribution of Radiolabeled Complex in Syrian Mice  

100 μL of final 111In-BPAMD solution with approximately 
3.7 MBq radioactivity (pH 7) was injected intravenously into 
the male Syrian mice through their tail veins. The total amount 
of radioactivity injected into each animal was measured by 
counting the 1-mL syringe before and after injection in a dose 
calibrator with fixed geometry. The biodistribution of the 
solutions among tissues were determined by scarification of 5 
mice with around 18 weeks old for each selected interval time 
(2, 4, 24 and 48 h) after injection under the animal care 
protocols.  

Blood samples were rapidly taken after scarification. The 
tissues (the skin, heart, kidneys, spleen, stomach, intestine, 
bone, muscle, lung and liver) were weighed and rinsed with 
normal saline and their activities were determined with a p-
type coaxial HPGe detector coupled with a multichannel 
analyser according to (1) [12]: 

 

A
	 	 	 	 	 	 	 	

                        (1) 

 
where, ε is the efficiency at photopeak energy, γ is the 
emission probability of the gamma line corresponding to the 

peak energy, 	is the live time of the sample spectrum 
collection in seconds, m is the mass (kg) of the measured 
sample, , 	 , , 	  and 	  are the correction factors for 
the nuclide decay from the time the sample is collected to start 
the measurement, the nuclide decay during counting period, 
self-attenuation in the measured sample, pulses loss due to 
random summing and the coincidence, respectively. N is the 
corrected net peak area of the corresponding photopeak given 
as: 
 

N 	 	

	 	
	                                   (2) 

 
where  is the net peak area in the sample spectrum,  is the 
corresponding net peak area in the background spectrum and 

	is the live time of the background spectrum collection in 
seconds.  

The percentage of injected dose per gram (%ID/g) for 
different organs was calculated by dividing the activity 
amount of each tissue (A) to the decay-corrected injected 
activity and the mass of each organ. Five mice were sacrificed 
for each time interval. All values were expressed as mean ± 
standard deviation and the data were compared using Student's 
T-test.  

D. Calculation of Accumulated Activity in Human Organs 

The accumulated source activity for each animal organ was 
calculated according to (3), where A (t) is the activity of each 
organ at time t. 

 

Ã 	 A	 t 	dt                               (3) 
 

For this purpose, the data points, which represent the non-
decay corrected percentage-injected dose, were created. A 
linear approximation was used between the two experimental 
points of times. The curves were extrapolated to infinity by 
fitting the tail of each curve to a monoexponential curve with 
the exponential coefficient equal to the physical decay 
constant of 111In. Whereas, the activity of blood at t=0 was 
considered as the total amount of injected activity, the activity 
of the all other organs was estimated to be zero at that time. 
The accumulated activity was calculated by computing the 
area under the curves.  

The accumulated activity in the animals was extrapolated to 
the accumulated activity in humans by the proposed method of 
Sparks et al. (4) [13]: 

 

Ã 	 Ã 	

	
	

	
	

	 (4) 

 
In order to extrapolate this accumulated activity to human, 

the standard mean weight of each organ for human was used 
[14].  

E. Equivalent Absorbed Dose Calculation 

The absorbed dose in the human organs was calculated by 
RADAR formalism based on the biodistribution data in the 
mice [11]: 
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