Search results for: Wave equation.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1553

Search results for: Wave equation.

1553 Traveling Wave Solutions for Shallow Water Wave Equation by (G'/G)-Expansion Method

Authors: Anjali Verma, Ram Jiwari, Jitender Kumar

Abstract:

This paper presents a new function expansion method for finding traveling wave solution of a non-linear equation and calls it the (G'/G)-expansion method. The shallow water wave equation is reduced to a non linear ordinary differential equation by using a simple transformation. As a result the traveling wave solutions of shallow water wave equation are expressed in three forms: hyperbolic solutions, trigonometric solutions and rational solutions.

Keywords: Shallow water wave equation, Exact solutions, (G'/G) expansion method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1830
1552 Extend Three-wave Method for the (3+1)-Dimensional Soliton Equation

Authors: Somayeh Arbabi Mohammad-Abadi, Maliheh Najafi

Abstract:

In this paper, we study (3+1)-dimensional Soliton equation. We employ the Hirota-s bilinear method to obtain the bilinear form of (3+1)-dimensional Soliton equation. Then by the idea of extended three-wave method, some exact soliton solutions including breather type solutions are presented.

Keywords: Three-wave method, (3+1)-dimensional Soliton equation, Hirota's bilinear form.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1547
1551 On Symmetry Analysis and Exact Wave Solutions of New Modified Novikov Equation

Authors: Anupma Bansal, R. K. Gupta

Abstract:

In this paper, we study a new modified Novikov equation for its classical and nonclassical symmetries and use the symmetries to reduce it to a nonlinear ordinary differential equation (ODE). With the aid of solutions of the nonlinear ODE by using the modified (G/G)-expansion method proposed recently, multiple exact traveling wave solutions are obtained and the traveling wave solutions are expressed by the hyperbolic functions, trigonometric functions and rational functions.

Keywords: New Modified Novikov Equation, Lie Classical Method, Nonclassical Method, Modified (G'/G)-Expansion Method, Traveling Wave Solutions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616
1550 Solving Inhomogeneous Wave Equation Cauchy Problems using Homotopy Perturbation Method

Authors: Mohamed M. Mousa, Aidarkhan Kaltayev

Abstract:

In this paper, He-s homotopy perturbation method (HPM) is applied to spatial one and three spatial dimensional inhomogeneous wave equation Cauchy problems for obtaining exact solutions. HPM is used for analytic handling of these equations. The results reveal that the HPM is a very effective, convenient and quite accurate to such types of partial differential equations (PDEs).

Keywords: Homotopy perturbation method, Exact solution, Cauchy problem, inhomogeneous wave equation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1797
1549 The Direct Ansaz Method for Finding Exact Multi-Wave Solutions to the (2+1)-Dimensional Extension of the Korteweg de-Vries Equation

Authors: Chuanjian Wang, Changfu Liu, Zhengde Dai

Abstract:

In this paper, the direct AnsAz method is used for constructing the multi-wave solutions to the (2+1)-dimensional extension of the Korteweg de-Vries (shortly EKdV) equation. A new breather type of three-wave solutions including periodic breather type soliton solution, breather type of two-solitary solution are obtained. Some cases with specific values of the involved parameters are plotted for each of the three-wave solutions. Mechanical features of resonance interaction among the multi-wave are discussed. These results enrich the variety of the dynamics of higher-dimensional nonlinear wave field.

Keywords: EKdV equation, Breather, Soliton, Bilinear form, The direct AnsAz method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1568
1548 Investigation of Stoneley Waves in Multilayered Plates

Authors: Bing Li, Tong Lu, Lei Qiang

Abstract:

Stoneley waves are interface waves that propagate at the interface between two solid media. In this study, the dispersion characteristics and wave structures of Stoneley waves in elastic multilayered plates are displayed and investigated. With a perspective of bulk wave, a reasonable assumption of the potential function forms of the expansion wave and shear wave in nth layer medium is adopted, and the characteristic equation of Stoneley waves in a three-layered plate is given in a determinant form. The dispersion curves and wave structures are solved and presented in both numerical and simulation results. It is observed that two Stoneley wave modes exist in a three-layered plate, that conspicuous dispersion occurs on low frequency band, that the velocity of each Stoneley wave mode approaches the corresponding Stoneley wave velocity at interface between two half infinite spaces. The wave structures reveal that the in-plane displacement of Stoneley waves are relatively high at interfaces, which shows great potential for interface defects detection.

Keywords: Characteristic equation, interface waves, dispersion curves, potential function, Stoneley waves, wave structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1674
1547 Cubic Trigonometric B-spline Approach to Numerical Solution of Wave Equation

Authors: Shazalina Mat Zin, Ahmad Abd. Majid, Ahmad Izani Md. Ismail, Muhammad Abbas

Abstract:

The generalized wave equation models various problems in sciences and engineering. In this paper, a new three-time level implicit approach based on cubic trigonometric B-spline for the approximate solution of wave equation is developed. The usual finite difference approach is used to discretize the time derivative while cubic trigonometric B-spline is applied as an interpolating function in the space dimension. Von Neumann stability analysis is used to analyze the proposed method. Two problems are discussed to exhibit the feasibility and capability of the method. The absolute errors and maximum error are computed to assess the performance of the proposed method. The results were found to be in good agreement with known solutions and with existing schemes in literature.

Keywords: Collocation method, Cubic trigonometric B-spline, Finite difference, Wave equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2592
1546 Traveling Wave Solutions for the Sawada-Kotera-Kadomtsev-Petviashivili Equation and the Bogoyavlensky-Konoplechenko Equation by (G'/G)- Expansion Method

Authors: Nisha Goyal, R.K. Gupta

Abstract:

This paper presents a new function expansion method for finding traveling wave solutions of a nonlinear equations and calls it the G G -expansion method, given by Wang et al recently. As an application of this new method, we study the well-known Sawada-Kotera-Kadomtsev-Petviashivili equation and Bogoyavlensky-Konoplechenko equation. With two new expansions, general types of soliton solutions and periodic solutions for these two equations are obtained.

Keywords: Sawada-Kotera-Kadomtsev-Petviashivili equation, Bogoyavlensky-Konoplechenko equation,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1607
1545 Solitary Wave Solutions for Burgers-Fisher type Equations with Variable Coefficients

Authors: Amit Goyal, Alka, Rama Gupta, C. Nagaraja Kumar

Abstract:

We have solved the Burgers-Fisher (BF) type equations, with time-dependent coefficients of convection and reaction terms, by using the auxiliary equation method. A class of solitary wave solutions are obtained, and some of which are derived for the first time. We have studied the effect of variable coefficients on physical parameters (amplitude and velocity) of solitary wave solutions. In some cases, the BF equations could be solved for arbitrary timedependent coefficient of convection term.

Keywords: Solitary wave solution, Variable coefficient Burgers- Fisher equation, Auxiliary equation method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1618
1544 The Splitting Upwind Schemes for Spectral Action Balance Equation

Authors: Anirut Luadsong, Nitima Aschariyaphotha

Abstract:

The spectral action balance equation is an equation that used to simulate short-crested wind-generated waves in shallow water areas such as coastal regions and inland waters. This equation consists of two spatial dimensions, wave direction, and wave frequency which can be solved by finite difference method. When this equation with dominating convection term are discretized using central differences, stability problems occur when the grid spacing is chosen too coarse. In this paper, we introduce the splitting upwind schemes for avoiding stability problems and prove that it is consistent to the upwind scheme with same accuracy. The splitting upwind schemes was adopted to split the wave spectral action balance equation into four onedimensional problems, which for each small problem obtains the independently tridiagonal linear systems. For each smaller system can be solved by direct or iterative methods at the same time which is very fast when performed by a multi-processor computer.

Keywords: upwind scheme, parallel algorithm, spectral action balance equation, splitting method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1676
1543 Some Exact Solutions of the (2+1)-Dimensional Breaking Soliton Equation using the Three-wave Method

Authors: Mohammad Taghi Darvishi, Mohammad Najafi

Abstract:

This paper considers the (2+1)-dimensional breaking soliton equation in its bilinear form. Some exact solutions to this equation are explicitly derived by the idea of three-wave solution method with the assistance of Maple. We can see that the new idea is very simple and straightforward.

Keywords: Soliton solution, computerized symbolic computation, painleve analysis, (2+1)-dimensional breaking soliton equation, Hirota's bilinear form.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1894
1542 Fourier Galerkin Approach to Wave Equation with Absorbing Boundary Conditions

Authors: Alexandra Leukauf, Alexander Schirrer, Emir Talic

Abstract:

Numerical computation of wave propagation in a large domain usually requires significant computational effort. Hence, the considered domain must be truncated to a smaller domain of interest. In addition, special boundary conditions, which absorb the outward travelling waves, need to be implemented in order to describe the system domains correctly. In this work, the linear one dimensional wave equation is approximated by utilizing the Fourier Galerkin approach. Furthermore, the artificial boundaries are realized with absorbing boundary conditions. Within this work, a systematic work flow for setting up the wave problem, including the absorbing boundary conditions, is proposed. As a result, a convenient modal system description with an effective absorbing boundary formulation is established. Moreover, the truncated model shows high accuracy compared to the global domain.

Keywords: Absorbing boundary conditions, boundary control, Fourier Galerkin approach, modal approach, wave equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 874
1541 Simulation of Irregular Waves by CFD

Authors: Muniyandy Elangovan

Abstract:

Wave generation methodology has been developed and validated by simulating wave in CFD. In this analysis, Flap type wave maker has been modeled numerically with wave basin to generate waves for marine experimental analysis. Irregular waves are arrived from the wave spectrum, and this wave has been simulated in CFD. Generated irregular wave has been compared with an analytical wave. Simulated wave has been processed for FFT analysis, and the wave spectrum is validated with original wave spectrum.

Keywords: Numerical wave tank, irregular wave, FFT, wavespectrum

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4028
1540 Traveling Wave Solutions for the (3+1)-Dimensional Breaking Soliton Equation by (G'/G)- Expansion Method and Modified F-Expansion Method

Authors: Mohammad Taghi Darvishi, Maliheh Najafi, Mohammad Najafi

Abstract:

In this paper, using (G/G )-expansion method and modified F-expansion method, we give some explicit formulas of exact traveling wave solutions for the (3+1)-dimensional breaking soliton equation. A modified F-expansion method is proposed by taking full advantages of F-expansion method and Riccati equation in seeking exact solutions of the equation.

Keywords: Exact solution, The (3+1)-dimensional breaking soliton equation, ( G G )-expansion method, Riccati equation, Modified Fexpansion method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2714
1539 Splitting Modified Donor-Cell Schemes for Spectral Action Balance Equation

Authors: Tanapat Brikshavana, Anirut Luadsong

Abstract:

The spectral action balance equation is an equation that used to simulate short-crested wind-generated waves in shallow water areas such as coastal regions and inland waters. This equation consists of two spatial dimensions, wave direction, and wave frequency which can be solved by finite difference method. When this equation with dominating propagation velocity terms are discretized using central differences, stability problems occur when the grid spacing is chosen too coarse. In this paper, we introduce the splitting modified donorcell scheme for avoiding stability problems and prove that it is consistent to the modified donor-cell scheme with same accuracy. The splitting modified donor-cell scheme was adopted to split the wave spectral action balance equation into four one-dimensional problems, which for each small problem obtains the independently tridiagonal linear systems. For each smaller system can be solved by direct or iterative methods at the same time which is very fast when performed by a multi-cores computer.

Keywords: donor-cell scheme, parallel algorithm, spectral action balance equation, splitting method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1480
1538 Analytical Investigation of the Effects of a Standing Ocean Wave in a Wave-Power Device OWC

Authors: E.G. Bautista, F. Méndez, O. Bautista, J.C. Arcos

Abstract:

In this work we study analytically and numerically the performance of the mean heave motion of an OWC coupled with the governing equation of the spreading ocean waves due to the wide variation in an open parabolic channel with constant depth. This paper considers that the ocean wave propagation is under the assumption of a shallow flow condition. In order to verify the effect of the waves in the OWC firstly we establish the analytical model in a non-dimensional form based on the energy equation. The proposed wave-power system has to aims: one is to perturb the ocean waves as a consequence of the channel shape in order to concentrate the maximum ocean wave amplitude in the neighborhood of the OWC and the second is to determine the pressure and volume oscillation of air inside the compression chamber.

Keywords: Oscillating water column, Shallow flow, Waveenergy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1456
1537 Alternating Implicit Block FDTD Method For Scalar Wave Equation

Authors: N. M. Nusi, M. Othman, M. Suleiman, F. Ismail, N. Alias

Abstract:

In this paper, an alternating implicit block method for solving two dimensional scalar wave equation is presented. The new method consist of two stages for each time step implemented in alternating directions which are very simple in computation. To increase the speed of computation, a group of adjacent points is computed simultaneously. It is shown that the presented method increase the maximum time step size and more accurate than the conventional finite difference time domain (FDTD) method and other existing method of natural ordering.

Keywords: FDTD, Scalar wave equation, alternating direction implicit (ADI), alternating group explicit (AGE), asymmetric approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1890
1536 A Novel System of Two Coupled Equations for the Longitudinal Components of the Electromagnetic Field in a Waveguide

Authors: Arti Vaish, Harish Parthasarathy

Abstract:

In this paper, a novel wave equation for electromagnetic waves in a medium having anisotropic permittivity has been derived with the help of Maxwell-s curl equations. The x and y components of the Maxwell-s equations are written with the permittivity () being a 3 × 3 symmetric matrix. These equations are solved for Ex , Ey, Hx, Hy in terms of Ez, Hz, and the partial derivatives. The Z components of the Maxwell-s curl are then used to arrive to the generalized Helmholtz equations for Ez and Hz.

Keywords: Electromagnetism, Maxwell's Equations, Anisotropic permittivity, Wave equation, Matrix Equation, Permittivity tensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1688
1535 Nonlinear Effects in Bubbly Liquid with Shock Waves

Authors: Raisa Kh. Bolotnova, Marat N. Galimzianov, Andrey S. Topolnikov, Uliana O. Agisheva, Valeria A. Buzina

Abstract:

The paper presents the results of theoretical and numerical modeling of propagation of shock waves in bubbly liquids related to nonlinear effects (realistic equation of state, chemical reactions, two-dimensional effects). On the basis on the Rankine- Hugoniot equations the problem of determination of parameters of passing and reflected shock waves in gas-liquid medium for isothermal, adiabatic and shock compression of the gas component is solved by using the wide-range equation of state of water in the analitic form. The phenomenon of shock wave intensification is investigated in the channel of variable cross section for the propagation of a shock wave in the liquid filled with bubbles containing chemically active gases. The results of modeling of the wave impulse impact on the solid wall covered with bubble layer are presented.

Keywords: bubbly liquid, cavitation, equation of state, shock wave

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1984
1534 Stress Solitary Waves Generated by a Second-Order Polynomial Constitutive Equation

Authors: Tsun-Hui Huang, Shyue-Cheng Yang, Chiou-Fen Shieh

Abstract:

In this paper, a nonlinear constitutive law and a curve fitting, two relationships between the stress-strain and the shear stress-strain for sandstone material were used to obtain a second-order polynomial constitutive equation. Based on the established polynomial constitutive equations and Newton’s second law, a mathematical model of the non-homogeneous nonlinear wave equation under an external pressure was derived. The external pressure can be assumed as an impulse function to simulate a real earthquake source. A displacement response under nonlinear two-dimensional wave equation was determined by a numerical method and computer-aided software. The results show that a suit pressure in the sandstone generates the phenomenon of stress solitary waves.

Keywords: Polynomial constitutive equation, solitary.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1657
1533 CFD Simulation and Validation of Flap Type Wave-Maker

Authors: Anant Lal, M. Elangovan

Abstract:

A general purpose viscous flow solver Ansys CFX was used to solve the unsteady three-dimensional (3D) Reynolds Averaged Navier-Stokes Equation (RANSE) for simulating a 3D numerical viscous wave tank. A flap-type wave generator was incorporated in the computational domain to generate the desired incident waves. Authors have made effort to study the physical behaviors of Flap type wave maker with governing parameters. Dependency of the water fill depth, Time period of oscillations and amplitude of oscillations of flap were studied. Effort has been made to establish relations between parameters. A validation study was also carried out against CFD methodology with wave maker theory. It has been observed that CFD results are in good agreement with theoretical results. Beaches of different slopes were introduced to damp the wave, so that it should not cause any reflection from boundary. As a conclusion this methodology can simulate the experimental wave-maker for regular wave generation for different wave length and amplitudes.

Keywords: CFD, RANSE, Flap type, wave-maker, VOF, seakeeping, numerical method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3904
1532 High Order Accurate Runge Kutta Nodal Discontinuous Galerkin Method for Numerical Solution of Linear Convection Equation

Authors: Faheem Ahmed, Fareed Ahmed, Yongheng Guo, Yong Yang

Abstract:

This paper deals with a high-order accurate Runge Kutta Discontinuous Galerkin (RKDG) method for the numerical solution of the wave equation, which is one of the simple case of a linear hyperbolic partial differential equation. Nodal DG method is used for a finite element space discretization in 'x' by discontinuous approximations. This method combines mainly two key ideas which are based on the finite volume and finite element methods. The physics of wave propagation being accounted for by means of Riemann problems and accuracy is obtained by means of high-order polynomial approximations within the elements. High order accurate Low Storage Explicit Runge Kutta (LSERK) method is used for temporal discretization in 't' that allows the method to be nonlinearly stable regardless of its accuracy. The resulting RKDG methods are stable and high-order accurate. The L1 ,L2 and L∞ error norm analysis shows that the scheme is highly accurate and effective. Hence, the method is well suited to achieve high order accurate solution for the scalar wave equation and other hyperbolic equations.

Keywords: Nodal Discontinuous Galerkin Method, RKDG, Scalar Wave Equation, LSERK

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2461
1531 Two-Dimensional Solitary Wave Solution to the Quadratic Nonlinear Schrdinger Equation

Authors: Sarun Phibanchon

Abstract:

The solitary wave solution of the quadratic nonlinear Schrdinger equation is determined by the iterative method called Petviashvili method. This solution is also used for the initial condition for the time evolution to study the stability analysis. The spectral method is applied for the time evolution.

Keywords: soliton, iterative method, spectral method, plasma

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1852
1530 Some Solitary Wave Solutions of Generalized Pochhammer-Chree Equation via Exp-function Method

Authors: Kourosh Parand, Jamal Amani Rad

Abstract:

In this paper, Exp-function method is used for some exact solitary solutions of the generalized Pochhammer-Chree equation. It has been shown that the Exp-function method, with the help of symbolic computation, provides a very effective and powerful mathematical tool for solving nonlinear partial differential equations. As a result, some exact solitary solutions are obtained. It is shown that the Exp-function method is direct, effective, succinct and can be used for many other nonlinear partial differential equations.

Keywords: Exp-function method, generalized Pochhammer- Chree equation, solitary wave solution, ODE's.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1580
1529 Photon Localization inside a Waveguide Modeled by Uncertainty Principle

Authors: Shilpa N. Kulkarni, Sujata R. Patrikar

Abstract:

In the present work, an attempt is made to understand electromagnetic field confinement in a subwavelength waveguide structure using concepts of quantum mechanics. Evanescent field in the waveguide is looked as inability of the photon to get confined in the waveguide core and uncertainty of position is assigned to it. The momentum uncertainty is calculated from position uncertainty. Schrödinger wave equation for the photon is written by incorporating position-momentum uncertainty. The equation is solved and field distribution in the waveguide is obtained. The field distribution and power confinement is compared with conventional waveguide theory. They were found in good agreement with each other.

Keywords: photon localization in waveguide, photon tunneling, quantum confinement of light, Schrödinger wave equation, uncertainty principle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2909
1528 Numerical Analysis of Wave and Hydrodynamic Models for Energy Balance and Primitive Equations

Authors: Worachat Wannawong, Usa W. Humphries, Prungchan Wongwises, Suphat Vongvisessomjai, Wiriya Lueangaram

Abstract:

A numerical analysis of wave and hydrodynamic models is used to investigate the influence of WAve and Storm Surge (WASS) in the regional and coastal zones. The numerical analyzed system consists of the WAve Model Cycle 4 (WAMC4) and the Princeton Ocean Model (POM) which used to solve the energy balance and primitive equations respectively. The results of both models presented the incorporated surface wave in the regional zone affected the coastal storm surge zone. Specifically, the results indicated that the WASS generally under the approximation is not only the peak surge but also the coastal water level drop which can also cause substantial impact on the coastal environment. The wave–induced surface stress affected the storm surge can significantly improve storm surge prediction. Finally, the calibration of wave module according to the minimum error of the significant wave height (Hs) is not necessarily result in the optimum wave module in the WASS analyzed system for the WASS prediction.

Keywords: energy balance equation, numerical analysis, primitiveequation, storm surge, wave.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1925
1527 Ion- Acoustic Solitary Waves in a Self- Gravitating Dusty Plasma Having Two-Temperature Electrons

Authors: S.N.Paul, G.Pakira, B.Paul, B.Ghosh

Abstract:

Nonlinear propagation of ion-acoustic waves in a selfgravitating dusty plasma consisting of warm positive ions, isothermal two-temperature electrons and negatively charged dust particles having charge fluctuations is studied using the reductive perturbation method. It is shown that the nonlinear propagation of ion-acoustic waves in such plasma can be described by an uncoupled third order partial differential equation which is a modified form of the usual Korteweg-deVries (KdV) equation. From this nonlinear equation, a new type of solution for the ion-acoustic wave is obtained. The effects of two-temperature electrons, gravity and dust charge fluctuations on the ion-acoustic solitary waves are discussed with possible applications.

Keywords: Charge fluctuations, gravitating dusty plasma, Ionacoustic solitary wave, Two-temperature electrons

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2036
1526 Calculation of Wave Function at the Origin (WFO) for Heavy Mesons by Numerical Solving of the Schrodinger Equation

Authors: M. Momeni Feyli

Abstract:

Many recent high energy physics calculations involving charm and beauty invoke wave function at the origin (WFO) for the meson bound state. Uncertainties of charm and beauty quark masses and different models for potentials governing these bound states require a simple numerical algorithm for evaluation of the WFO's for these bound states. We present a simple algorithm for this propose which provides WFO's with high precision compared with similar ones already obtained in the literature.

Keywords: Mesons, Bound states, Schrodinger equation, Nonrelativistic quark model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1492
1525 Approximate Solution to Non-Linear Schrödinger Equation with Harmonic Oscillator by Elzaki Decomposition Method

Authors: Emad K. Jaradat, Ala’a Al-Faqih

Abstract:

Nonlinear Schrödinger equations are regularly experienced in numerous parts of science and designing. Varieties of analytical methods have been proposed for solving these equations. In this work, we construct an approximate solution for the nonlinear Schrodinger equations, with harmonic oscillator potential, by Elzaki Decomposition Method (EDM). To illustrate the effects of harmonic oscillator on the behavior wave function, nonlinear Schrodinger equation in one and two dimensions is provided. The results show that, it is more perfectly convenient and easy to apply the EDM in one- and two-dimensional Schrodinger equation.

Keywords: Non-linear Schrodinger equation, Elzaki decomposition method, harmonic oscillator, one and two- dimensional Schrodinger equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 891
1524 Nonlinear Propagation of Acoustic Soliton Waves in Dense Quantum Electron-Positron Magnetoplasma

Authors: A. Abdikian

Abstract:

Propagation of nonlinear acoustic wave in dense electron-positron (e-p) plasmas in the presence of an external magnetic field and stationary ions (to neutralize the plasma background) is studied. By means of the quantum hydrodynamics model and applying the reductive perturbation method, the Zakharov-Kuznetsov equation is derived. Using the bifurcation theory of planar dynamical systems, the compressive structure of electrostatic solitary wave and periodic travelling waves is found. The numerical results show how the ion density ratio, the ion cyclotron frequency, and the direction cosines of the wave vector affect the nonlinear electrostatic travelling waves. The obtained results may be useful to better understand the obliquely nonlinear electrostatic travelling wave of small amplitude localized structures in dense magnetized quantum e-p plasmas and may be applicable to study the particle and energy transport mechanism in compact stars such as the interior of massive white dwarfs etc.

Keywords: Bifurcation theory, magnetized electron-positron plasma, phase portrait, the Zakharov-Kuznetsov equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1355