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Abstract—The solitary wave solution of the quadratic nonlinear
Schrd̈inger equation is determined by the iterative method called
Petviashvili method. This solution is also used for the initial condition
for the time evolution to study the stability analysis. The spectral
method is applied for the time evolution.
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I. INTRODUCTION

Solitary waves are well known as the solution of the

nonlinear wave equations. These kind waves retain their shape

as a result of the balance between nonlinearity and dispersion.

In one-dimensional case, there are two major types of the

nonlinear wave equations for produce the solitary wave, one

is the Korteweg-de Vries (KdV) equation,

nt + nnx + nxxx = 0,

in which the subscripts x and t denote differentiation with

respect to space and time, respectively, which originally de-

rived for water, (see e.g. [1] for further details). For plasmas,

this governs weakly nonlinear ion-acoustic waves in plasma

when the electrons have a Maxwellian distribution [2]. In that

case n is the electrostatic potential. Another type is the cubic

nonlinear Schrödinger equation (cNLS),

iφt + φxx + |φ|2φ = 0,

which is the most famous equation for solitons travel along

fiber optics [3], [4]. A connection between the KdV and

cNLS equations can be made within the context of Madelung’s

fluid [5]. This means that one can determine the solitary wave

solution of the cNLS by solving the KdV equation. On the

other hands, it is the transformation from cNLS to KdV by

using this relationship,

φ(x, t) =
√

n(x, t)eiΘ(x,t),

where n = |φ|2 is the Madelung’s fluid density. We are

interested in the quadratic nonlinear Schrödinger equation

(qNLS),

iφt + φxx + |φ|φ = 0,

because after we applied the Madelung’s fluid, we then have

the Schamel equation [6], [7],

nt + n1/2nx + nxxx = 0.

This equation also governs weakly nonlinear ion-acoustic wave

in plasma but some of electrons are trapped on ion-acoustic
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waves, while others have not. The solitary wave solution for

1-D case is not too difficult to obtain, which is

φ(x− 2V0t) = 6η2 sech2 η(x− 2V0t)e
i(xV0−2(V 2

0 −2η2)t).

where V0 denotes a wave speed and η is a constant. The

Madelung’s method can also apply to higher dimensional

nonlinear Schrödinger equation but some KdV-like equations

are not integrable. To determine solitary wave solutions for the

higher dimension, one can choose one of numerical methods

to solve the problem. In the next section we use Petviashvili

method [8] applied to 2D qNLS,

iφt + φxx + φyy + |φ|φ = 0. (1)

for the solitary wave solution. We next apply the spectral

method to study time evolution of the solution. We then go to

the conclusion for this work.

II. PETVIASHVILI METHOD

This method has been used for obtaining a ground state

solution of the nonlinear Schrödinger equation with the power-

law potential [8] where Pelinovsky and Stepanyants [9] found

the convergence conditions for homogenous equations. To

determine the solution, one considers

φ(x, y, t) = u(x, y)eiμt (2)

where u(x, y) > 0 and μ is the propagation constant. After

substitute (2) into (1), we then get

−μu+ uxx + uyy + u2 = 0.

We introduce a new variable,

Mu = (μ− ∂xx − ∂yy)u = u2. (3)

For determining the steady solution, we have to calculate

u(x, y) from (3) by iteration, namely,

ui+1 = M−1u2
i , (4)

where i denotes a number of iteration from zero to any integer

number. The result of (4) gives zero or infinity. The key idea

of Petviashvili method is to find the stabilized factor which

maintains the result of the iteration without diverge to infinity

or to zero. Then,

ui+1 = Sγ
i M

−1u2
i ,

in which γ is a constant and this stabilizing factor can be

obtained by inner product

Si =
< ui,Mui >

< ui, u2
i >
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To calculate γ, we assume that the exact solution u(x, y) =
O(1). After some iterations, the solution becomes ui(x, y) =
O(ε), where ε ≤ 1 or ε ≥ 1. The order of magnitude of the

stabilizing factor can be represented as

Si = O(ε−1)

The order of magnitude of u(x, y) becomes

ui+1 = O(ε−γ+2) (5)

This means that γ = 2. We next first try the Gaussian function

as the initial condition

u0(x, y) = 5e−(x2+y2)

in which Lx = Ly = [−5, 5] and Nx = Ny = 128. We

choose μ = 2 for this examination. Fig. 1 shows how the initial

condition approaches to the steady state solution for each step

of iteration. Fig. 1(f) presents the solitary wave solution of

the qNLS. Fig. 2 shows the error for each step of iteration, at

Fig. 1. results for each iterations : (a) i = 0, (b) i = 10, (c) i = 20,
(d) i = 30, (e) i = 35, (f) i = 56.

i = 56, the error is around 9.9 ∗ 10−11. We now change the

initial condition to

u0(x, y) = 5 sech2(
√

x2 + y2) cos(x) sin(y)

This profile is shown in Fig. 3 and the result from the

Petviashvili method is shown in Fig. 4. The error again shows

in Fig. 5. To check the stability of ui+1, we next apply the

spectral method for the time evolution of this solitary wave

solution.

III. EVOLUTION OF SOLITARY WAVES

To study the evolution of the perturbed soliton, we express

the qNLS equation in the form

dφ

dt
= −i

(
F−1

((
ξ2 + χ2

)
F (φ)

)− |φ|φ)

Fig. 2. shows error for each iteration

Fig. 3. the initial profile of 5 sech2(
√

x2 + y2) cos(x) sin(y)

where F and F−1 denote the Fourier and inverse Fourier

transforms, respectively. These are obtained in the numerical

scheme using the discrete Fourier transform

[F (φ)]p,q =

Nx−1∑

l=0

Ny−1∑

m=0

φl,mei(ξpxl+χqym)

where Nx and Ny are the number of mesh points in the x
and y directions, (xl, ym) = (lLx/Nx,mLy/Ny), Lx and Ly

are the lengths of the domain in the x and y directions, and

(ξp, χq) = 2π(p/Lx, q/Ly) for p = 0, . . . , Nx − 1 and q =
0, . . . , Ny−1. The Runge-Kutta method [10] was used for the

time derivative. We next used the final step of iteration as the

initial condition. If we have a truly solitary wave solution, we

will see nothing for the time evolution because of the steady

state solution. The result is shown in Fig 6.
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Fig. 4. results for each iterations : (a) i = 0, (b) i = 1, (c) i = 2, (d) i = 3,
(e) i = 4, (f) i = 58.

Fig. 5. shows error for each iteration

IV. CONCLUSIONS

The solitary wave solution of the qNLS can be determined

by the Petviashvili method. The time evolution is shown

that the results are correct. This is the one example of the

application of the computational methods to calculate the

solitary wave solution of the nonlinear wave equations. This

is also a good start to study some phenomena of the vortex

solitons or excited states of others nonlinear wave equations.
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