The Direct Ansaz Method for Finding Exact Multi-Wave Solutions to the (2+1)-Dimensional Extension of the Korteweg de-Vries Equation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33087
The Direct Ansaz Method for Finding Exact Multi-Wave Solutions to the (2+1)-Dimensional Extension of the Korteweg de-Vries Equation

Authors: Chuanjian Wang, Changfu Liu, Zhengde Dai

Abstract:

In this paper, the direct AnsAz method is used for constructing the multi-wave solutions to the (2+1)-dimensional extension of the Korteweg de-Vries (shortly EKdV) equation. A new breather type of three-wave solutions including periodic breather type soliton solution, breather type of two-solitary solution are obtained. Some cases with specific values of the involved parameters are plotted for each of the three-wave solutions. Mechanical features of resonance interaction among the multi-wave are discussed. These results enrich the variety of the dynamics of higher-dimensional nonlinear wave field.

Keywords: EKdV equation, Breather, Soliton, Bilinear form, The direct AnsAz method.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1335676

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1575

References:


[1] M.J. Ablowitz, P.A. Clarkson, Solitons, Nonlinear Evolution and Inverse Scattering, Cambridge Univ. Press, 1991.
[2] M. R. Miurs, Backlund Transformation, 1978, Springer, Berlin.
[3] Gu CH, Soliton Theory and Its Application, Springer, Berlin (1995).
[4] Chen AH, Multi-kink solutions and soliton fission and fusion of Sharma- Tasso-Olver equation. Phys.Lett.A. 2010; 374:2340-2345.
[5] Wang S, Tang XY, Lou SY, Soliton fission and fusion: Burgers equation and Sharma-Tasso-Olver equation. Chaos Solitons Fractals. 2004; 21:231- 239.
[6] Hirota R, Exact solution of the Korteweg-de-Vries equation for multiple collisions of solitons, Phys. Lett. A. 1971; 27:1192-1194.
[7] The PainlevĀ“e property for partial differential equations. J. Math.Phys. 1983;24:522-526.
[8] Clarkson PA, Kruskal, New similarity solutions of the Boussinesq equation. J. Math. Phys.1989; 30:2202-2213.
[9] Lou SY, Ruan HY, Chen DF and Chen WZ, Similarity reductions of the KP equation by a direct method, J. Phys. A Math. Gen. 1991; 24:1455- 1467.
[10] Wang ML, Exact solutions for a compound KdV-Burger equation, Phys. Lett. A 1996; 213:279-287.
[11] He JH, Wu XH. Exp-function method for nonlinear wave equations. Chaos, Solitons and Fractals 2006; 30(3):700-708.
[12] He JH. Variational iteration method-a kind of non-linear analytical technique: some examples. International Journal of Non-linear Mechanics 1999; 34(4):699-708.
[13] Abassy TA, El-Tawil MA and Saleh HK, The solution of KdV and mKdV equations using adomian Pade approximation. Int.J.Nonlinear Sci.Numer.Simul. 2004; 5:327-340.
[14] Liu JB, Yang KQ, The extended F-expansion method and exact solutions of nonlinear PDEs. Chaos Solitons Frac. 2004; 22:111-121.
[15] He JH, Wu XH. Exp-function method for nonlinear wave equations. Chaos, Solitons and Fractals 2006; 30(3):700-708.
[16] Dai ZD, Liu ZJ, Li DL. Exact periodic solitary-wave solution for KdV equation. Chin. Phys. Lett. 2008; 25:1531-1532.
[17] Wang CJ, Dai ZD, Mu G, Lin SQ, New exact periodic solitary-wave solutions for new (2+1)-dimensional KdV equation. Commun. Theor. Phys.2009; 52:862-864.
[18] Ma SH and Fang JP, Hong BH and Zheng CL, New exact solutions for the (3+1)-dimensional Jimbo-Miwa system. Chaos, Solitons and Fractals 2009; 40:1352-1355.
[19] Ma SH and Fang JP, Hong BH, Zheng CL, Complex wave excitations and chaotic patterns for a general (2+1)-dimensional Korteweg-de Vries system. Chin. Phys. B 2008; 17(8):2767-2773.
[20] Ma SH and Fang JP, New Exact Solutions and Localized Excitations in a (2+1)-Dimensional Soliton System . Z. Naturforsch. 2009; 64:37-43.
[21] Ma SH and Fang JP, Multi Dromion-Solitoff and Fractal Excitations for (2+1)-DimensionalBoiti-Leon-Manna-Pempinelli System. Commun. Theor. Phys. 2009; 52:641-647.
[22] Ma SH and Fang JP, Ren QB, Instantaneous embed soliton and instantaneous taper-like soliton for the (3+1)-dimensional Burgers system. Acta. Phys. Sin. 2010; 59:4420-4425.
[23] Zhang YF,Tam Honwah, Zhao J, Higher-Dimensional KdV Equations and Their Soliton Solutions, Commun. Theor. Phys. 2006; 45:411-413.
[24] Shen SF, Lie symmetry analysis and PainlevĀ“e analysis of the new (2+1)- dimensional KdV equation, Appl. Math. J. Chinese Univ. Ser. B. 2007; 22(2):207-212.