Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33156
Numerical Analysis of Wave and Hydrodynamic Models for Energy Balance and Primitive Equations
Authors: Worachat Wannawong, Usa W. Humphries, Prungchan Wongwises, Suphat Vongvisessomjai, Wiriya Lueangaram
Abstract:
A numerical analysis of wave and hydrodynamic models is used to investigate the influence of WAve and Storm Surge (WASS) in the regional and coastal zones. The numerical analyzed system consists of the WAve Model Cycle 4 (WAMC4) and the Princeton Ocean Model (POM) which used to solve the energy balance and primitive equations respectively. The results of both models presented the incorporated surface wave in the regional zone affected the coastal storm surge zone. Specifically, the results indicated that the WASS generally under the approximation is not only the peak surge but also the coastal water level drop which can also cause substantial impact on the coastal environment. The wave–induced surface stress affected the storm surge can significantly improve storm surge prediction. Finally, the calibration of wave module according to the minimum error of the significant wave height (Hs) is not necessarily result in the optimum wave module in the WASS analyzed system for the WASS prediction.Keywords: energy balance equation, numerical analysis, primitiveequation, storm surge, wave.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1060359
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1947References:
[1] A. F. Blumberg and G. L. Mellor, A description of a three-dimensional coastal ocean circulation model, In N. S. Heaps, editor, Three- Dimensional Coastal Ocean Models, Coastal and Estuarine Sciences, American Geophysical Union, Washington, DC, 4(1987), 1-16.
[2] C. Amante and B. W. Eakins, 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis (ETOPO1), NOAA, National Geophysical Data Center, Boulder, Colorado, U.S.A. (2008), 21.
[3] G. J. Komen, K. Hasselmann and S. Hasselmann, On the existence of a fully developed windsea spectrum, Journal of Physical Oceanography, 14(1984), 1271-1285.
[4] G. Komen, L. Cavaleri, M. Donelan, K. Hasselmann, S. Hasselmann and P.A.E.M. Janseen, Dynamics and modelling of ocean waves, Cambridge University Press, UK. (1994), 532.
[5] G. L. Mellor, An equation of state for numerical models of oceans and estuaries, Journal of Atmospheric and Oceanic Technology, 8(1991), 609-611.
[6] G. Ph. van Vledder, Directional response of wind waves to turning winds, Commun. Hydraul. Geotech. Eng., Delft University of Technology, The Netherlands, 1990.
[7] H. Gunther, S. Hasselmann and P.A.E.M. Janssen, WAM model Cycle 4, Technical Report No. 4, Hamburg, Germany, 1992.
[8] H. L. Tolman, Wind wave propagation in tidal seas, Commun. Hydraul. Geotech. Eng., Delft University of Technology, The Netherlands, 1990.
[9] J. Monbaliu, R. Padilla-Hernandez, J. C. Hargreaves, J. C. Carretero- Albiach, W. Luo, M. Sclavo and H. Gunther, The spectral wave model WAM adapted for applications with high spatial resolution, Coastal Engineering, 41(2000), 4-62.
[10] K. F. Bowden, Physical oceanography of coastal waters, Ellis Horwood, Southampton, UK., (1983), 302.
[11] K. Hasselmann, T. P. Barnett, E. Bouws, H. Carlson, D. E. Cartwright, K. Enke, J. I. Ewing, H. Gienapp, D. E. Hasselmann, P. Kruseman, A. Meerbrug, P. Mauller, D. J. Olvers, K. Richter, W. Sell and H. Walden, Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP), Deutsche Hydrographische Zeitschrift, 8(1973), 95.
[12] M. D. Powell, P. J. Vivkery and T. A. Reinhold, Reduced drag coefficient for high wind speeds in tropical cyclones, Nature, 422(2003), 278-283.
[13] M. O. Edwards, Global Gridded Elevation and Bathymetry on 5-Minute Geographic Grid (ETOPO5), NOAA, National Geophysical Data Center, Boulder, Colorado, U.S.A., 1989.
[14] M. Xia, L. Xie, L. J. Pietrafesa and M. Peng, A numerical study of storm surge in the cape fear river estuary and adjacent coast, Journal of Coastal Research, 24(2008), 159-167.
[15] N. Aschariyaphotha, P. Wongwises, S. Wongwises, U. W. Humphries and X. You, Simulation of seasonal circulations and thermohaline variabilities in the Gulf of Thailand, Advances in Atmospheric Sciences, 25(2008), 489-506.
[16] N. Booij, R. C. Ris, and L. H. Holthuijsen, A third-generation wave model for coastal regions Part 1, Model description and validation, Journal of Geophysical Research, 104(1999), 7649-7666.
[17] P.A.E.M. Janssen, Quasi-linear theory of wind-wave generation applied to wave forecasting, Journal of Physical Oceanography, 19(1991), 745- 754.
[18] P. A. Wittmann and P. D. Farrar, Global, regional and coastal wave prediction, Marine Technology Society Journal, 31(1997), 76-82.
[19] P. Harr, R. Ellsberry, T. Hogan and W. Clune, North Pacific cyclone sea- level pressure errors with NOGAPS, Weather and Forecasting, 7(1992), 3.
[20] P. H. LeBlond and L. A. Mysak, Waves in the ocean. Elsevier, Amsterdam, 1978.
[21] S. Hasselmann, K. Hasselmann, E. Bauer, P.A.E.M. Janssen, G. J. Komen, L. Bertotti, P. Lionello, A. Guillaume, V. C. Cardone, J. A. Greenwood, M. Reistad, L. Zambresky and J. A. Ewing, The WAM model-a third generation ocean wave prediction model, Journal of Physical Oceanography, 18(1988), 1775-1810.
[22] S. Hasselmann, K. Hasselmann, J. H. Allender and T. P. Barnett, Computations and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum, Part II: Parameterizations of the nonlinear energy transfer for application in wave models, Journal of Physical Oceanography, 15(1985), 1378-1391.
[23] S. Levitus, R. Burgett and T. Boyer, World Ocean Atlas: Salinity, NOAA Atlas NESDIS 3, U. S. Government Printing Office, Washington D.C., U.S.A., 3(1994b), 99.
[24] S. Levitus and T. Boyer, World Ocean Atlas: Temperature, NOAA Atlas NESDIS 4, U. S. Government Printing Office, Washington D.C., U.S.A., 4(1994a), 117.
[25] S. Vongvisessomjai, Impacts of Typhoon Vae and Linda on wind waves in the upper gulf of Thailand and east coast, Songklanakarin Journal of Science and Technology, 29(2007), 1199-1216.
[26] S. Vongvisessomjai, Tropical cyclone disasters in the Gulf of Thailand, Songklanakarin Journal of Science and Technology, 31(2009), 213-227.
[27] S. Vongvisessomjai, P. Chatanantavet and P. Srivihok, Interaction of tide and salinity barrier: Limitation of numerical model, Songklanakarin Journal of Science and Technology, 30(2008), 531-538.
[28] T. Brikshavana and A. Luadsong, Splitting modified Donor-Cell schemes for spectral action balance equation, International Journal of Computational and Mathematical Sciences, 4(2010), 214-222.
[29] T. D. Pugh, Tides, Surges and Mean Sea-Level, John Wiley & Sons, London, UK., (1987), 472.
[30] T. Ezer, H. Arango and A. F. Shchepetkin, Developments in terrain- following ocean models: intercomparison of numerical aspects, Ocean Modelling, 4(2002), 249-267.
[31] T. F. Hogan and T. E. Rosmond, The description of the Navy Operational Global Atmospheric System-s spectral forecast model, Monthly Weather Review, 119(1991), 1786-1815.
[32] W. G. Large and S. Pond, Open ocean momentum fluxes in moderate to strong winds, Journal of Physical Oceanography, 11(1981), 324-336.
[33] W. Wannawong, U. W. Humphries and A. Luadsong, The application of curvilinear coordinate for primitive equation in the Gulf of Thailand, Thai Journal of Mathematics, 6(2008), 89-108.
[34] W. Wannawong, U. W. Humphries, P. Wongwises, S. Vongvisessomjai and W. Lueangaram, A numerical study of two coordinates for energy balance equations by wave model, Thai Journal of Mathematics, 8(2010), 197-214.
[35] W. Wannawong, U. W. Humphries, P. Wongwises, S. Vongvisessomjai and W. Lueangaram, Numerical modeling and computation of storm surge for primitive equation by hydrodynamic model, Thai Journal of Mathematics, 8(2010), 347-363.