**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**31100

##### Solitary Wave Solutions for Burgers-Fisher type Equations with Variable Coefficients

**Authors:**
Amit Goyal,
Alka,
Rama Gupta,
C. Nagaraja Kumar

**Abstract:**

**Keywords:**
Solitary wave solution,
Variable coefficient Burgers-
Fisher equation,
Auxiliary equation method

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1072670

**References:**

[1] H. Wilhelmsson, Simultaneous diffusion and reaction processes in plasma dynamics, Phys. Rev. A 38 (1988) 1482-1489.

[2] R.D. Benguria, M.C. Depassier and V. Mendez, Minimal speed of fronts of reaction-convection-diffusion equations, Phys. Rev. E 69 (2004) 031106.

[3] J.D. Murray, Mathematical Biology I & II (Springer-Verlag, New York, 2002).

[4] C. Sophocleous, Further transformation properties of generalised inhomogeneous nonlinear diffusion equations with variable coefficients, Physica A 345 (2005) 457-471.

[5] L. Shaoyong, L. Xiumei and W. Yonghong, Explicit solutions of two nonlinear dispersive equations with variable coefficients, Phys. Lett. A 372 (2008) 7001-7006.

[6] A.M.Wazwaz and H. Triki, Bright solitons and multiple soliton solutions for coupled modified KdV equations with time-dependent coefficients, Phys. Scr. 82 (2010) 015001.

[7] H. Chen and H. Zhang, New multiple soliton solutions to the general Burgers-Fisher equation and the Kuramoto-Sivashinsky equation, Chaos Solitons Fractals 19 (2004) 71-76.

[8] M.G. Neubert, M. Kot and M.A. Lewis, Invasion speeds in fluctuating environments, Proc. R. Soc. Lond. B 267 (2000) 1603-1610.

[9] V. M'endez, J. Fort and T. Pujol, The speed of reaction-diffusion wavefronts in nonsteady media, J. Phys. A: Math. Gen. 36 (2003) 3983- 3993.

[10] R.A. Fisher, The wave of advance of advantageous genes, Ann. Eugenics 7 (1937) 355-369.

[11] J.M. Burgers, A mathematical model illustrating the theory of turbulence, Adv. Appl. Mech. 1 (1948) 171-199.

[12] P.S. Sundaram, A. Mahalingam and T. Alagesan, Solitary wave solution for inhomogeneous nonlinear Schr┬¿odinger system with loss/gain, Chaos Solitons Fractals 36 (2008) 1412-1418.

[13] W.J. Liu et al., A new approach to the analytic soliton solutions for the variable-coefficient higher-order nonlinear Schr┬¿odinger model in inhomogeneous optical fibers, J. Mod. Optic. 57 (2010) 309-315.

[14] X. Zhao, D. Tang and L. Wang, New soliton-like solutions for KdV equation with variable coefficient, Phys. Lett. A 346 (2005) 288-291.

[15] C.L. Zheng and L.Q. Chen, Solitons with fission and fusion behaviors in a variable coefficient Broer-Kaup system, Chaos Solitons Fractals 24 (2005) 1347-1351.

[16] S.A. El-Wakil, M.A. Madkour and M.A. Abdou, Application of Expfunction method for nonlinear evolution equations with variable coefficients, Phys. Lett. A 369 (2007) 62-69.

[17] Sirendaoreji and S. Jiong, Auxiliary equation method for solving nonlinear partial differential equations, Phys. Lett. A 309 (2003) 387-396.

[18] D.R. Nelson and N.M. Shnerb, Non-Hermitian localization and population biology, Phys. Rev. E 58 (1998) 1383-1403.

[19] D.M. Greenberger, Some remarks on the extended Galilean transformation, Am. J. Phys. 47 (1979) 35-38.

[20] E. Yomba, Construction of new soliton-like solutions for the (2 + 1) dimensional KdV equation with variable coefficients Chaos Solitons Fractals 21 (2004) 75-79.

[21] K. Davison et al., The role of waterways in the spread of the Neolithic, J. Archaeol. Sci. 33 (2006) 641-652.

[22] A. Mogilner and L.E. Keshet, A non-local model for a swarm, J. Math. Biol. 38 (1999) 534-570.