{"title":"Some Exact Solutions of the (2+1)-Dimensional Breaking Soliton Equation using the Three-wave Method","authors":"Mohammad Taghi Darvishi, Mohammad Najafi","volume":55,"journal":"International Journal of Mathematical and Computational Sciences","pagesStart":1031,"pagesEnd":1035,"ISSN":"1307-6892","URL":"https:\/\/publications.waset.org\/pdf\/12525","abstract":"

This paper considers the (2+1)-dimensional breaking soliton equation in its bilinear form. Some exact solutions to this equation are explicitly derived by the idea of three-wave solution method with the assistance of Maple. We can see that the new idea is very simple and straightforward.<\/p>\r\n","references":" J.H. He, Variational iteration method-a kind of non-linear analytical\r\ntechnique: some examples, Int. J. Non-linear Mech. 34(4) (1999) 699-\r\n708.\r\n M.T. Darvishi, F. Khani, A.A. Soliman, The numerical simulation for stiff\r\nsystems of ordinary differential equations, Comput. Math. Appl. 54(7-8)\r\n(2007) 1055-1063.\r\n M.T. Darvishi, F. Khani, Numerical and explicit solutions of the fifth-order\r\nKorteweg-de Vries equations, Chaos, Solitons and Fractals 39 (2009)\r\n2484-2490.\r\n S. Abbasbandy, M.T. Darvishi, A numerical solution of Burgers- equation\r\nby modified Adomian method, Appl. Math. Comput. 163 (2005) 1265-\r\n1272.\r\n S. Abbasbandy, M.T. Darvishi, A numerical solution of Burgers- equation\r\nby time discretization of Adomian-s decomposition method, Appl. Math.\r\nComput. 170 (2005) 95-102.\r\n J.H. He, New interpretation of homotopy perturbation method, Int. J.\r\nMod. Phys. B 20(18) (2006) 2561-2568.\r\n J.H. He, Application of homotopy perturbation method to nonlinear wave\r\nequations, Chaos, Solitons and Fractals 26(3) (2005) 695-700.\r\n J.H. He, Homotopy perturbation method for bifurcation of nonlinear\r\nproblems, Int. J. Nonlinear Sci. Numer. Simul. 6(2) (2005) 207-208.\r\n M.T. Darvishi, F. Khani, Application of He-s homotopy perturbation\r\nmethod to stiff systems of ordinary differential equations, Zeitschrift fur\r\nNaturforschung A, 63a (1-2) (2008) 19-23.\r\n M.T. Darvishi, F. Khani, S. Hamedi-Nezhad, S.-W. Ryu, New modification\r\nof the HPM for numerical solutions of the sine-Gordon and coupled\r\nsine-Gordon equations, Int. J. Comput. Math. 87(4) (2010) 908-919.\r\n J.H. He, Bookkeeping parameter in perturbation methods, Int. J. Nonlin.\r\nSci. Numer. Simul. 2 (2001) 257-264.\r\n M.T. Darvishi, A. Karami, B.-C. Shin, Application of He-s parameterexpansion\r\nmethod for oscillators with smooth odd nonlinearities, Phys.\r\nLett. A 372(33) (2008) 5381-5384.\r\n B.-C. Shin, M.T. Darvishi, A. Karami, Application of He-s parameterexpansion\r\nmethod to a nonlinear self-excited oscillator system, Int. J.\r\nNonlin. Sci. Num. Simul. 10(1) (2009) 137-143.\r\n M.T. Darvishi, Preconditioning and domain decomposition schemes to\r\nsolve PDEs, Int-l J. of Pure and Applied Math. 1(4) (2004) 419-439.\r\n M.T. Darvishi, S. Kheybari and F. Khani, A numerical solution of the\r\nKorteweg-de Vries equation by pseudospectral method using Darvishi-s\r\npreconditionings, Appl. Math. Comput. 182(1) (2006) 98-105.\r\n M.T. Darvishi, M. Javidi, A numerical solution of Burgers- equation\r\nby pseudospectral method and Darvishi-s preconditioning, Appl. Math.\r\nComput. 173(1) (2006) 421-429.\r\n M.T. Darvishi, F. Khani and S. Kheybari, Spectral collocation solution\r\nof a generalized Hirota-Satsuma KdV equation, Int. J. Comput. Math.\r\n84(4) (2007) 541-551.\r\n M.T. Darvishi, F. Khani, S. Kheybari, Spectral collocation method\r\nand Darvishi-s preconditionings to solve the generalized Burgers-Huxley\r\nequation, Commun., Nonlinear Sci. Numer. Simul. 13(10) (2008) 2091-\r\n2103.\r\n S.J. Liao, An explicit, totally analytic approximate solution for Blasius\r\nviscous flow problems, Int. J. Non-Linear Mech. 34 (1999) 759-778.\r\n S.J. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis\r\nMethod, Chapman & Hall\/CRC Press, Boca Raton, 2003.\r\n S.J. Liao, On the homotopy analysis method for nonlinear problems,\r\nAppl. Math. Comput. 147 (2004) 499-513.\r\n S.J. Liao, A new branch of solutions of boundary-layer flows over an\r\nimpermeable stretched plate, Int. J. Heat Mass Transfer 48 (2005) 2529-\r\n2539.\r\n S.J. Liao, A general approach to get series solution of non-similarity\r\nboundary-layer flows, Commun. Nonlinear Sci. Numer. Simul. 14(5)\r\n(2009) 2144-2159.\r\n M.T. Darvishi, F. Khani, A series solution of the foam drainage equation,\r\nComput. Math. Appl. 58 (2009) 360-368.\r\n A. Aziz, F. Khani, M.T. Darvishi, Homotopy analysis method for\r\nvariable thermal conductivity heat flux gage with edge contact resistance,\r\nZeitschrift fuer Naturforschung A, 65a(10) (2010) 771-776.\r\n J.H. He, M.A. Abdou, New periodic solutions for nonlinear evolution\r\nequations using Exp-function method, Chaos, Solitons and Fractals 34\r\n(2007) 1421-1429.\r\n J.H. He, X.H. Wu, Exp-function method for nonlinear wave equations,\r\nChaos, Solitons and Fractals, 30(3) (2006) 700-708.\r\n J.H. He, X.H. Wu, Construction of solitary solution and compacton-like\r\nsolution by variational iteration method, Chaos, Solitons and Fractals, 29\r\n(2006) 108-113.\r\n F. Khani, S. Hamedi-Nezhad, M.T. Darvishi, S.-W. Ryu, New solitary\r\nwave and periodic solutions of the foam drainage equation using the Expfunction\r\nmethod, Nonlin. Anal.: Real World Appl. 10 (2009) 1904-1911.\r\n B.-C. Shin, M.T. Darvishi, A. Barati, Some exact and new solutions\r\nof the Nizhnik-Novikov-Vesselov equation using the Exp-function method,\r\nComput. Math. Appl. 58(11\/12) (2009) 2147-2151.\r\n X.H. Wu, J.H. He, Exp-function method and its application to nonlinear\r\nequations, Chaos, Solitons and Fractals 38(3) (2008) 903-910.\r\n Z.-D. Dai, S.-Q. Lin. D.-L. Li, G. Mu, The three-wave method for\r\nnonlinear evalution equations, Nonl. Sci. Lett. A 1(1) (2010) 77-82.\r\n C.-J. Wang, Z.-D. Dai, L. Liang, Exact three-wave solution for higher\r\ndimensional KDV-type equation, Appl. Math. Comput. 216 (2010) 501-\r\n505.\r\n S. Ting, G.X. Guo, M.Y. Ling, Wronskian form of N-Soliton solution for\r\nthe (2+1)-dimensional breaking soliton equation, Chin. Phys. Lett. 24(2)\r\n(2007) 305-307.\r\n W.-Q. Yong, Bilinear B\u252c\u00bfacklund transformation and explicit solutions for\r\na nonlinear evolution equation, Chin. Phys. B 19(4) (2010).\r\n J. Hietarinta, Hirota-s bilinear method and soliton solutions, Physics\r\nAUC, 15(1) (2005) 31-37.","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 55, 2011"}