Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Nonlinear Effects in Bubbly Liquid with Shock Waves
Authors: Raisa Kh. Bolotnova, Marat N. Galimzianov, Andrey S. Topolnikov, Uliana O. Agisheva, Valeria A. Buzina
Abstract:
The paper presents the results of theoretical and numerical modeling of propagation of shock waves in bubbly liquids related to nonlinear effects (realistic equation of state, chemical reactions, two-dimensional effects). On the basis on the Rankine- Hugoniot equations the problem of determination of parameters of passing and reflected shock waves in gas-liquid medium for isothermal, adiabatic and shock compression of the gas component is solved by using the wide-range equation of state of water in the analitic form. The phenomenon of shock wave intensification is investigated in the channel of variable cross section for the propagation of a shock wave in the liquid filled with bubbles containing chemically active gases. The results of modeling of the wave impulse impact on the solid wall covered with bubble layer are presented.Keywords: bubbly liquid, cavitation, equation of state, shock wave
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1082523
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1995References:
[1] R. I. Nigmatulin, Dynamics of Multiphase Media. Moscow: Nauka, vol. 1-2, 1987.
[2] A. I. Sychev, "Strong shock waves in bubble media," Zh. Tekh. Fiz., vol. 80, no. 6, pp. 31-35, 2010.
[3] B. E. Gelfand, S. A. Gubin, and E. I Timofeev, "Reflection of plane shock waves from a solid wall in a gas bubble-liquid system," Fluid Dynamics, vol.13, no. 2, pp. 306-310, 1978.
[4] U. O. Agisheva, R. Kh. Bolotnova, V. A. Buzina, M. N. Galimzianov "Parametric analysis of the regimes of shock-wave effects on the gasliquid media," Fluid Dynamics, 2012, submitted for publication.
[5] R. I. Nigmatulin, R. Kh. Bolotnova, "Wide range equation of state for water and steam. Reductive form of molecular phase," High Temperature, vol. 49, no. 2, pp. 310-313, 2011.
[6] I. J. Campbell, A. S. Pitcher, "Shock waves in a liquids containing gas bubbles," in Proc. of the Royal Society of London, A.243, no. 1235, pp. 534-545, 1958.
[7] Kh. A. Rakhmatulin, "Wave propagation in multicomponent media," Prikladnaya Matematika i Mekhanika, vol. 33, no. 4, pp. 598-601, 1969.
[8] Y. B. Zeldovich, Yu. P. Raizer, Physics of Shock Waves and High- Temperature Hydrodynamic Phenomena. Prinston: Academic Press, 1966.
[9] V. S. Surov, "Shock adiabat of a one-velocity heterogeneous medium," J. of Engineering Physics and Thermophysics, vol. 79, no. 5, pp.886- 892, 2006.
[10] R. Kh. Bolotnova, ð£. N. Galimzianov, and U. ð×. Agisheva, "Modeling of the strong shock waves interaction in gas-liquid mixtures," Izv. Vysshikh Uchebnykh Zavedeniy. Povolzhskii Region . Fiz.-Math. Nauki, no. 2, pp. 3-14, 2011.
[11] R. I. Nigmatulin, V. Sh. Shagapov, I. K. Gimaltdinov, and F. F. Akhmadulin, "Explosion of a bubble curtain with a combustible-gas mixture under the action of a pressure pulse" // Doklady Physics, Vol. 48, pp. 75-79, 2003.
[12] R. I. Nigmatulin, R. Kh. Bolotnova, N. K. Vakhitova, A. S. Topolnikov, S. I. Konovalova, and N. A.Makhota, "Amplification of compression waves in clean and bubbly liquids", Proc. of World Academy of Science, Engineering and Technology, vol. 58, pp.188-193, 2009.
[13] A. I. Sychev, "Influence of bubble size on the characteristics of detonation wave", Phyz. Gor. Vzr., vol. 31, No. 5, pp.83-91, 1995.
[14] R. I. Nigmatulin, V. Sh. Shagapov, I. K. Gimaltdinov, and M. N. Galimzyanov, "Two-dimensional pressure waves in liquid with bubbly zone", Doklady Physics, vol. 46, no 6, pp. 445-451, 2001.
[15] R. I. Nigmatulin, V. Sh. Shagapov, and N. K. Vakhitova, "Expression of bearing phase compressibility in bubbly media under shock waves," Soviet Physics Doklady, vol. 304, no. 5, pp. 1077-1088, 1989.
[16] A. A. Samarskiy, Yu. P. Popov, Difference Methods for Solving Gas Dynamics Problems. Moscow: Nauka, 1980.