Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32722
Nonlinear Propagation of Acoustic Soliton Waves in Dense Quantum Electron-Positron Magnetoplasma

Authors: A. Abdikian


Propagation of nonlinear acoustic wave in dense electron-positron (e-p) plasmas in the presence of an external magnetic field and stationary ions (to neutralize the plasma background) is studied. By means of the quantum hydrodynamics model and applying the reductive perturbation method, the Zakharov-Kuznetsov equation is derived. Using the bifurcation theory of planar dynamical systems, the compressive structure of electrostatic solitary wave and periodic travelling waves is found. The numerical results show how the ion density ratio, the ion cyclotron frequency, and the direction cosines of the wave vector affect the nonlinear electrostatic travelling waves. The obtained results may be useful to better understand the obliquely nonlinear electrostatic travelling wave of small amplitude localized structures in dense magnetized quantum e-p plasmas and may be applicable to study the particle and energy transport mechanism in compact stars such as the interior of massive white dwarfs etc.

Keywords: Bifurcation theory, magnetized electron-positron plasma, phase portrait, the Zakharov-Kuznetsov equation.

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1300


[1] B. Eliasson and P. K. Shukla, "Nonlinear Aspects of Quantum Plasma Physics: Nanoplasmonics and Nanostructures in Dense Plasmas," Plasma and Fusion Research, vol. 4, p. 032, 2009.
[2] P. K. Shukla and B. Eliasson, "Nonlinear aspects of quantum plasma physics," Physics-Uspekhi, vol. 53, p. 51, 2010.
[3] Y. D. Jung, "Quantum-mechanical effects on electron–electron scattering in dense high-temperature plasmas," Phys. Plasmas, vol. 8, p. 3842, 2001.
[4] G. Manfredi and F. Haas, "Self-consistent fluid model for a quantum electron gas," Physical Review B, vol. 64, p. 075316, 2001.
[5] W. Masood and B. Eliasson, "Electrostatic solitary waves in a quantum plasma with relativistically degenerate electrons," Physics of Plasmas, vol. 18, p. 034503, 2011.
[6] A. Abdikian and M. Bagheri, "Electrostatic waves in carbon nanotubes with an axial magnetic field," Phys. Plasmas, vol. 20, p. 102103, 2013.
[7] G. Manfredi, "How to model quantum plasmas," Fields Inst. Commun., vol. 46, p. 263, 2005.
[8] W. Moslem, I. Zeba, and P. Shukla, "Solitary acoustic pulses in quantum semiconductor plasmas," Applied Physics Letters, vol. 101, p. 032106, 2012.
[9] Y. T. Ma, S. H. Mao, and J. K. Xue, "Waves in a bounded quantum plasma with electron exchange-correlation effects," Physics of Plasmas, vol. 18, p. 102108, 2011.
[10] A. Abdikian, "The influence of external transverse magnetic field in propagation of electrostatic oscillations in single-walled carbon nanotube," The European Physical Journal D, vol. 70, p. 218, 2016.
[11] A. Abdikian and Z. Ehsan, "Propagation of electromagnetic waves in quantum plasmas magnetized slab," Physics Letters A, p. in press, 2017.
[12] F. Haas, L. G. Garcia, J. Goedert, and G. Manfredi, "Quantum ion-acoustic waves," Phys. Plasmas, vol. 10, p. 3858, 2003.
[13] R. Sagdeev, "Cooperative phenomena and shock waves in collisionless plasmas," Reviews of plasma physics, vol. 4, p. 23, 1966.
[14] F. Chen, Introduction to plasma physics and controlled fusion. New York: Plenum Press, 1984.
[15] S. Ali, W. Moslem, P. Shukla, and R. Schlickeiser, "Linear and nonlinear ion-acoustic waves in an unmagnetized electron-positron-ion quantum plasma," Physics of Plasmas, vol. 14, p. 082307, 2007.
[16] A. Misra, P. Shukla, and C. Bhowmik, "Electron-acoustic solitary waves in dense quantum electron-ion plasmas," Physics of Plasmas, vol. 14, p. 082309, 2007.
[17] S. Mahmood and Q. Haque, "Nonlinear electrostatic waves in inhomogeneous dense dusty magnetoplasmas," Physics Letters A, vol. 374, p. 872, 2010.
[18] P. Shukla, B. Dasgupta, and P. Sakanaka, "Nonlinear magnetohydrodynamics of electron–positron plasmas," Physics Letters A, vol. 269, p. 144, 2000.
[19] S. Mahmood, A. Mushtaq, and H. Saleem, "Ion acoustic solitary wave in homogeneous magnetized electron-positron-ion plasmas," New Journal of Physics, vol. 5, p. 28, 2003.
[20] P. Shukla, B. Eliasson, and L. Stenflo, "Electromagnetic solitary pulses in a magnetized electron-positron plasma," Physical Review E, vol. 84, p. 037401, 2011.
[21] M. Momeni, "Linear and nonlinear electromagnetic waves in a magnetized quantum electron-positron plasma," International Journal of Modern Physics C, vol. 26, p. 1550058, 2015.
[22] S. I. Popel, S. V. Vladimirov, and P. K. Shukla, "Ion‐acoustic solitons in electron-positron-ion plasmas," Physics of Plasmas, vol. 2, p. 716, 1995.
[23] S. Mahmood, N. Akhtar, and H. Ur-Rehman, "Acoustic solitons in magnetized quantum electron-positron plasmas," Physica Scripta, vol. 83, p. 035505, 2011.
[24] V. I. Berezhiani, V. Skarka, and S. Mahajan, "Relativistic solitary wave in an electron-positron plasma," Physical Review E, vol. 48, p. R3252, 11/01/ 1993.
[25] N. Iwamoto, "Electron-positron pair creation in relativistic shocks: Pair plasma in thermodynamic equilibrium," Physical Review A, vol. 39, p. 4076, 1989.
[26] G. Zank and R. Greaves, "Linear and nonlinear modes in nonrelativistic electron-positron plasmas," Physical Review E, vol. 51, p. 6079, 1995.
[27] F. Verheest and T. Cattaert, "Large amplitude solitary electromagnetic waves in electron-positron plasmas," Physics of Plasmas, vol. 11, p. 3078, 2004.
[28] I. Kourakis, A. Esfandyari Kalejahi, M. Mehdipoor, and P. K. Shukla, "Modulated electrostatic modes in pair plasmas: Modulational stability profile and envelope excitations," Physics of Plasmas, vol. 13, p. 052117, 2006.
[29] A. Esfandyari Kalejahi, I. Kourakis, M. Mehdipoor, and P. Shukla, "Electrostatic mode envelope excitations in e-p-i plasmas-application in warm pair ion plasmas with a small fraction of stationary ions," Journal of Physics A: Mathematical and General, vol. 39, p. 13817, 2006.
[30] A. Esfandyari Kalejahi, I. Kourakis, and P. Shukla, "Oblique modulation of electrostatic modes and envelope excitations in pair-ion and electron-positron plasmas," Physics of Plasmas, vol. 13, p. 122310, 2006.
[31] I. Kourakis, W. M. Moslem, U. M. Abdelsalam, R. Sabry, and P. K. Shukla, "Nonlinear dynamics of rotating multi-component pair plasmas and epi plasmas," Plasma and Fusion Research, vol. 4, p. 018, 2009.
[32] M. Yu, P. K. Shukla, and L. Stenflo, "Alfven vortices in a strongly magnetized electron-position plasma," The Astrophysical Journal, vol. 309, p. L63, 1986.
[33] Q. Haque, S. Mahmood, and A. Mushtaq, "Nonlinear electrostatic drift waves in dense electron-positron-ion plasmas," Physics of Plasmas, vol. 15, p. 082315, 2008.
[34] E. Behery, F. Haas, and I. Kourakis, "Weakly nonlinear ion-acoustic excitations in a relativistic model for dense quantum plasma," Physical Review E, vol. 93, p. 023206, 2016.
[35] M. A. Hossen and A. A. Mamun, "Nonlinear positron-acoustic waves in fully relativistic degenerate plasmas," Physica Scripta, vol. 91, p. 035201, 2016.
[36] A. Abdikian and S. Mahmood, "Acoustic solitons in a magnetized quantum electron-positron-ion plasma with relativistic degenerate electrons and positrons pressure," Physics of Plasmas, vol. 23, p. 122303, 2016.
[37] U. K. Samanta, A. Saha, and P. Chatterjee, "Bifurcations of dust ion acoustic travelling waves in a magnetized dusty plasma with a q-nonextensive electron velocity distribution," Physics of Plasmas, vol. 20, p. 022111, 2013.
[38] T. Kaladze and S. Mahmood, "Ion-acoustic cnoidal waves in plasmas with warm ions and kappa distributed electrons and positrons," Physics of Plasmas, vol. 21, p. 032306, 2014.
[39] E. El-Shamy, "Nonlinear ion-acoustic cnoidal waves in a dense relativistic degenerate magnetoplasma," Physical Review E, vol. 91, p. 033105, 2015.
[40] E. El-Shamy, R. Al-Chouikh, A. El-Depsy, and N. Al-Wadie, "Nonlinear propagation of electrostatic travelling waves in degenerate dense magnetoplasmas," Physics of Plasmas, vol. 23, p. 122122, 2016.
[41] S. N. Chow and J. K. Hale, Methods of bifurcation theory vol. 251. New York: Springer-Verlag, 1982.
[42] U. K. Samanta, A. Saha, and P. Chatterjee, "Bifurcations of nonlinear ion acoustic travelling waves in the frame of a Zakharov-Kuznetsov equation in magnetized plasma with a kappa distributed electron," Physics of Plasmas, vol. 20, p. 052111, 2013.
[43] F. Haas and S. Mahmood, "Linear and nonlinear ion-acoustic waves in nonrelativistic quantum plasmas with arbitrary degeneracy," Physical Review E, vol. 92, p. 053112, 11/25/ 2015.
[44] N. Crouseilles, P. A. Hervieux, and G. Manfredi, "Quantum hydrodynamic model for the nonlinear electron dynamics in thin metal films," Physical Review B, vol. 78, p. 155412, 10/09/ 2008.
[45] R. Maroof, A. Mushtaq, and A. Qamar, "Quantum dust magnetosonic waves with spin and exchange correlation effects," Physics of Plasmas, vol. 23, p. 013704, 2016.
[46] M. Shahmansouri, "The exchange-correlation effects on surface plasmon oscillations in semi-bounded quantum plasma," Physics of Plasmas vol. 22, p. 092106, 2015.
[47] K. Mebrouk, L. A. Gougam, and M. Tribeche, "Implication of the Electron Exchange-Correlation on Fully Nonlinear Quantum Dust Ion-Acoustic Solitons," Communications in Theoretical Physics, vol. 65, p. 73, 2016.
[48] N. A. El-Bedwehy and W. M. Moslem, "Zakharov-Kuznetsov-Burgers equation in superthermal electron-positron-ion plasma," Astrophysics and Space Science, vol. 335, p. 435, 2011.
[49] T. S. Gill, A. S. Bains, and N. S. Saini, "Ion acoustic soliton in weakly relativistic magnetized electron-positron-ion plasma," Canadian Journal of Physics, vol. 87, p. 861, 2009.
[50] R. C. Davidson and J. E. Scherer, "Methods in Nonlinear Plasma Theory," IEEE Transactions on Plasma Science, vol. 1, p. 58, 1973.
[51] H. Poincaré, "Sur l'équilibre d'une masse fluide animée d'un mouvement de rotation," Acta mathematica, vol. 7, p. 259, 1885.
[52] J. Guckenheimer and P. J. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields vol. 42. New York: Springer-Verlag, 1983.