Search results for: Discrete Parameter Tracking
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2067

Search results for: Discrete Parameter Tracking

2067 Simulating Discrete Time Model Reference Adaptive Control System with Great Initial Error

Authors: Bubaker M. F. Bushofa, Abdel Hafez A. Azab

Abstract:

This article is based on the technique which is called Discrete Parameter Tracking (DPT). First introduced by A. A. Azab [8] which is applicable for less order reference model. The order of the reference model is (n-l) and n is the number of the adjustable parameters in the physical plant. The technique utilizes a modified gradient method [9] where the knowledge of the exact order of the nonadaptive system is not required, so, as to eliminate the identification problem. The applicability of the mentioned technique (DPT) was examined through the solution of several problems. This article introduces the solution of a third order system with three adjustable parameters, controlled according to second order reference model. The adjustable parameters have great initial error which represent condition. Computer simulations for the solution and analysis are provided to demonstrate the simplicity and feasibility of the technique.

Keywords: Adaptive Control System, Discrete Parameter Tracking, Discrete Time Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1019
2066 Discrete Tracking Control of Nonholonomic Mobile Robots: Backstepping Design Approach

Authors: Alexander S. Andreev, Olga A. Peregudova

Abstract:

In this paper we propose a discrete tracking control of nonholonomic mobile robots with two degrees of freedom. The electromechanical model of a mobile robot moving on a horizontal surface without slipping, with two rear wheels controlled by two independent DC electric, and one front roal wheel is considered. We present backstepping design based on the Euler approximate discretetime model of a continuous-time plant. Theoretical considerations are verified by numerical simulation.

Keywords: Actuator Dynamics, Backstepping, Discrete-Time Controller, Lyapunov Function, Wheeled Mobile Robot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2014
2065 Object Tracking in Motion Blurred Images with Adaptive Mean Shift and Wavelet Feature

Authors: Iman Iraei, Mina Sharifi

Abstract:

A method for object tracking in motion blurred images is proposed in this article. This paper shows that object tracking could be improved with this approach. We use mean shift algorithm to track different objects as a main tracker. But, the problem is that mean shift could not track the selected object accurately in blurred scenes. So, for better tracking result, and increasing the accuracy of tracking, wavelet transform is used. We use a feature named as blur extent, which could help us to get better results in tracking. For calculating of this feature, we should use Harr wavelet. We can look at this matter from two different angles which lead to determine whether an image is blurred or not and to what extent an image is blur. In fact, this feature left an impact on the covariance matrix of mean shift algorithm and cause to better performance of tracking. This method has been concentrated mostly on motion blur parameter. transform. The results reveal the ability of our method in order to reach more accurately tracking.

Keywords: Mean shift, object tracking, blur extent, wavelet transform, motion blur.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 768
2064 On Maneuvering Target Tracking with Online Observed Colored Glint Noise Parameter Estimation

Authors: M. A. Masnadi-Shirazi, S. A. Banani

Abstract:

In this paper a comprehensive algorithm is presented to alleviate the undesired simultaneous effects of target maneuvering, observed glint noise distribution, and colored noise spectrum using online colored glint noise parameter estimation. The simulation results illustrate a significant reduction in the root mean square error (RMSE) produced by the proposed algorithm compared to the algorithms that do not compensate all the above effects simultaneously.

Keywords: Glint noise, IMM, Kalman Filter, Kinematics, Target Tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1597
2063 Adaptive Extended Kalman Filter for Ballistic Missile Tracking

Authors: Gaurav Kumar, Dharmbir Prasad, Rudra Pratap Singh

Abstract:

In the current work, adaptive extended Kalman filter (AEKF) is presented for solution of ground radar based ballistic missile (BM) tracking problem in re-entry phase with unknown ballistic coefficient. The estimation of trajectory of any BM in re-entry phase is extremely difficult, because of highly non-linear motion of BM. The estimation accuracy of AEKF has been tested for a typical test target tracking problem adopted from literature. Further, the approach of AEKF is compared with extended Kalman filter (EKF). The simulation result indicates the superiority of the AEKF in solving joint parameter and state estimation problems.

Keywords: Adaptive, AEKF, ballistic missile, EKF, re-entry phase, target tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1597
2062 Sampled-Data Model Predictive Tracking Control for Mobile Robot

Authors: Wookyong Kwon, Sangmoon Lee

Abstract:

In this paper, a sampled-data model predictive tracking control method is presented for mobile robots which is modeled as constrained continuous-time linear parameter varying (LPV) systems. The presented sampled-data predictive controller is designed by linear matrix inequality approach. Based on the input delay approach, a controller design condition is derived by constructing a new Lyapunov function. Finally, a numerical example is given to demonstrate the effectiveness of the presented method.

Keywords: Model predictive control, sampled-data control, linear parameter varying systems, LPV.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1207
2061 A Comparative Study between Discrete Wavelet Transform and Maximal Overlap Discrete Wavelet Transform for Testing Stationarity

Authors: Amel Abdoullah Ahmed Dghais, Mohd Tahir Ismail

Abstract:

In this paper the core objective is to apply discrete wavelet transform and maximal overlap discrete wavelet transform functions namely Haar, Daubechies2, Symmlet4, Coiflet2 and discrete approximation of the Meyer wavelets in non stationary financial time series data from Dow Jones index (DJIA30) of US stock market. The data consists of 2048 daily data of closing index from December 17, 2004 to October 23, 2012. Unit root test affirms that the data is non stationary in the level. A comparison between the results to transform non stationary data to stationary data using aforesaid transforms is given which clearly shows that the decomposition stock market index by discrete wavelet transform is better than maximal overlap discrete wavelet transform for original data.

Keywords: Discrete wavelet transform, maximal overlap discrete wavelet transform, stationarity, autocorrelation function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4673
2060 Adaptive Kalman Filter for Noise Estimation and Identification with Bayesian Approach

Authors: Farhad Asadi, S. Hossein Sadati

Abstract:

Bayesian approach can be used for parameter identification and extraction in state space models and its ability for analyzing sequence of data in dynamical system is proved in different literatures. In this paper, adaptive Kalman filter with Bayesian approach for identification of variances in measurement parameter noise is developed. Next, it is applied for estimation of the dynamical state and measurement data in discrete linear dynamical system. This algorithm at each step time estimates noise variance in measurement noise and state of system with Kalman filter. Next, approximation is designed at each step separately and consequently sufficient statistics of the state and noise variances are computed with a fixed-point iteration of an adaptive Kalman filter. Different simulations are applied for showing the influence of noise variance in measurement data on algorithm. Firstly, the effect of noise variance and its distribution on detection and identification performance is simulated in Kalman filter without Bayesian formulation. Then, simulation is applied to adaptive Kalman filter with the ability of noise variance tracking in measurement data. In these simulations, the influence of noise distribution of measurement data in each step is estimated, and true variance of data is obtained by algorithm and is compared in different scenarios. Afterwards, one typical modeling of nonlinear state space model with inducing noise measurement is simulated by this approach. Finally, the performance and the important limitations of this algorithm in these simulations are explained. 

Keywords: adaptive filtering, Bayesian approach Kalman filtering approach, variance tracking

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 546
2059 Disturbance Observer for Lateral Trajectory Tracking Control for Autonomous and Cooperative Driving

Authors: Christian Rathgeber, Franz Winkler, Dirk Odenthal, Steffen Muller

Abstract:

In this contribution a structure for high level lateral vehicle tracking control based on the disturbance observer is presented. The structure is characterized by stationary compensating side forces disturbances and guaranteeing a cooperative behavior at the same time. Driver inputs are not compensated by the disturbance observer. Moreover the structure is especially useful as it robustly stabilizes the vehicle. Therefore the parameters are selected using the Parameter Space Approach. The implemented algorithms are tested in real world scenarios.

Keywords: Disturbance observer, trajectory tracking, robust control, autonomous driving, cooperative driving

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2980
2058 Calibration of the Discrete Element Method Using a Large Shear Box

Authors: Corné J. Coetzee, Etienne Horn

Abstract:

One of the main challenges in using the Discrete Element Method (DEM) is to specify the correct input parameter values. In general, the models are sensitive to the input parameter values and accurate results can only be achieved if the correct values are specified. For the linear contact model, micro-parameters such as the particle density, stiffness, coefficient of friction, as well as the particle size and shape distributions are required. There is a need for a procedure to accurately calibrate these parameters before any attempt can be made to accurately model a complete bulk materials handling system. Since DEM is often used to model applications in the mining and quarrying industries, a calibration procedure was developed for materials that consist of relatively large (up to 40 mm in size) particles. A coarse crushed aggregate was used as the test material. Using a specially designed large shear box with a diameter of 590 mm, the confined Young’s modulus (bulk stiffness) and internal friction angle of the material were measured by means of the confined compression test and the direct shear test respectively. DEM models of the experimental setup were developed and the input parameter values were varied iteratively until a close correlation between the experimental and numerical results was achieved. The calibration process was validated by modelling the pull-out of an anchor from a bed of material. The model results compared well with experimental measurement.

Keywords: Discrete Element Method (DEM), calibration, shear box, anchor pull-out.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2617
2057 Discrete-time Phase and Delay Locked Loops Analyses in Tracking Mode

Authors: Jiri Sebesta

Abstract:

Phase locked loops (PLL) and delay locked loops (DLL) play an important role in establishing coherent references (phase of carrier and symbol timing) in digital communication systems. Fully digital receiver including digital carrier synchronizer and symbol timing synchronizer fulfils the conditions for universal multi-mode communication receiver with option of symbol rate setting over several digit places and long-term stability of requirement parameters. Afterwards it is necessary to realize PLL and DLL in synchronizer in digital form and to approach to these subsystems as a discrete representation of analog template. Analysis of discrete phase locked loop (DPLL) or discrete delay locked loop (DDLL) and technique to determine their characteristics based on analog (continuous-time) template is performed in this posed paper. There are derived transmission response and error function for 1st order discrete locked loop and resulting equations and graphical representations for 2nd order one. It is shown that the spectrum translation due to sampling takes effect at frequency characteristics computing for specific values of loop parameters.

Keywords: Carrier synchronization, coherent demodulation, software defined receiver, symbol timing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2578
2056 Number of Parametrization of Discrete-Time Systems without Unit-Delay Element: Single-Input Single-Output Case

Authors: Kazuyoshi Mori

Abstract:

In this paper, we consider the parametrization of the discrete-time systems without the unit-delay element within the framework of the factorization approach. In the parametrization, we investigate the number of required parameters. We consider single-input single-output systems in this paper. By the investigation, we find, on the discrete-time systems without the unit-delay element, three cases that are (1) there exist plants which require only one parameter and (2) two parameters, and (3) the number of parameters is at most three.

Keywords: Linear systems, parametrization, Coprime Factorization, number of parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 765
2055 Object Tracking System Using Camshift, Meanshift and Kalman Filter

Authors: Afef Salhi, Ameni Yengui Jammaoussi

Abstract:

This paper presents a implementation of an object tracking system in a video sequence. This object tracking is an important task in many vision applications. The main steps in video analysis are two: detection of interesting moving objects and tracking of such objects from frame to frame. In a similar vein, most tracking algorithms use pre-specified methods for preprocessing. In our work, we have implemented several object tracking algorithms (Meanshift, Camshift, Kalman filter) with different preprocessing methods. Then, we have evaluated the performance of these algorithms for different video sequences. The obtained results have shown good performances according to the degree of applicability and evaluation criteria.

Keywords: Tracking, meanshift, camshift, Kalman filter, evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8198
2054 Optimal Linear Quadratic Digital Tracker for the Discrete-Time Proper System with an Unknown Disturbance

Authors: Jason Sheng-Hong Tsai, Faezeh Ebrahimzadeh, Min-Ching Chung, Shu-Mei Guo, Leang-San Shieh, Tzong-Jiy Tsai, Li Wang

Abstract:

In this paper, we first construct a new state and disturbance estimator using discrete-time proportional plus integral observer to estimate the system state and the unknown external disturbance for the discrete-time system with an input-to-output direct-feedthrough term. Then, the generalized optimal linear quadratic digital tracker design is applied to construct a proportional plus integral observer-based tracker for the system with an unknown external disturbance to have a desired tracking performance. Finally, a numerical simulation is given to demonstrate the effectiveness of the new application of our proposed approach.

Keywords: Optimal linear quadratic tracker, proportional plus integral observer, state estimator, disturbance estimator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1234
2053 Human Tracking across Heterogeneous Systems Based On Mobile Agent Technologies

Authors: Tappei Yotsumoto, Atsushi Nomura, Kozo Tanigawa, Kenichi Takahashi, Takao Kawamura, Kazunori Sugahara

Abstract:

In a human tracking system, expanding a monitoring range of one system is complicating the management of devices and increasing its cost. Therefore, we propose a method to realize a wide-range human tracking by connecting small systems. In this paper, we examined an agent deploy method and information contents across the heterogeneous human tracking systems. By implementing the proposed method, we can construct a human tracking system across heterogeneous systems, and the system can track a target continuously between systems.

Keywords: Human tracking system, mobile agent, monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1471
2052 Stereo Motion Tracking

Authors: Yudhajit Datta, Jonathan Bandi, Ankit Sethia, Hamsi Iyer

Abstract:

Motion Tracking and Stereo Vision are complicated, albeit well-understood problems in computer vision. Existing softwares that combine the two approaches to perform stereo motion tracking typically employ complicated and computationally expensive procedures. The purpose of this study is to create a simple and effective solution capable of combining the two approaches. The study aims to explore a strategy to combine the two techniques of two-dimensional motion tracking using Kalman Filter; and depth detection of object using Stereo Vision. In conventional approaches objects in the scene of interest are observed using a single camera. However for Stereo Motion Tracking; the scene of interest is observed using video feeds from two calibrated cameras. Using two simultaneous measurements from the two cameras a calculation for the depth of the object from the plane containing the cameras is made. The approach attempts to capture the entire three-dimensional spatial information of each object at the scene and represent it through a software estimator object. In discrete intervals, the estimator tracks object motion in the plane parallel to plane containing cameras and updates the perpendicular distance value of the object from the plane containing the cameras as depth. The ability to efficiently track the motion of objects in three-dimensional space using a simplified approach could prove to be an indispensable tool in a variety of surveillance scenarios. The approach may find application from high security surveillance scenes such as premises of bank vaults, prisons or other detention facilities; to low cost applications in supermarkets and car parking lots.

Keywords: Kalman Filter, Stereo Vision, Motion Tracking, Matlab, Object Tracking, Camera Calibration, Computer Vision System Toolbox.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2783
2051 Simulation of Tracking Time Delay Algorithm using Mathcad Package

Authors: Mahmud Hesain ALdwaik, Omar Hsiain Eldwaik

Abstract:

This paper deals with tracking and estimating time delay between two signals. The simulation of this algorithm accomplished by using Mathcad package is carried out. The algorithm we will present adaptively controls and tracking the delay, so as to minimize the mean square of this error. Thus the algorithm in this case has task not only of seeking the minimum point of error but also of tracking the change of position, leading to a significant improving of performance. The flowchart of the algorithm is presented as well as several tests of different cases are carried out.

Keywords: Tracking time delay, Algorithm simulation, Mathcad, MSE

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2002
2050 A Novel Tracking Method Using Filtering and Geometry

Authors: Sang Hoon Lee, Jong Sue Bae, Taewan Kim, Jin Mo Song, Jong Ju Kim

Abstract:

Image target detection and tracking methods based on target information such as intensity, shape model, histogram and target dynamics have been proven to be robust to target model variations and background clutters as shown by recent researches. However, no definitive answer has been given to occluded target by counter measure or limited field of view(FOV). In this paper, we will present a novel tracking method using filtering and computational geometry. This paper has two central goals: 1) to deal with vulnerable target measurements; and 2) to maintain target tracking out of FOV using non-target-originated information. The experimental results, obtained with airborne images, show a robust tracking ability with respect to the existing approaches. In exploring the questions of target tracking, this paper will be limited to consideration of airborne image.

Keywords: Tracking, Computational geometry, Homography, Filter

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1738
2049 Design and Implementation of a Hybrid Fuzzy Controller for a High-Performance Induction

Authors: M. Zerikat, S. Chekroun

Abstract:

This paper proposes an effective algorithm approach to hybrid control systems combining fuzzy logic and conventional control techniques of controlling the speed of induction motor assumed to operate in high-performance drives environment. The introducing of fuzzy logic in the control systems helps to achieve good dynamical response, disturbance rejection and low sensibility to parameter variations and external influences. Some fundamentals of the fuzzy logic control are preliminary illustrated. The developed control algorithm is robust, efficient and simple. It also assures precise trajectory tracking with the prescribed dynamics. Experimental results have shown excellent tracking performance of the proposed control system, and have convincingly demonstrated the validity and the usefulness of the hybrid fuzzy controller in high-performance drives with parameter and load uncertainties. Satisfactory performance was observed for most reference tracks.

Keywords: Fuzzy controller, high-performance, inductionmotor, intelligent control, robustness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2127
2048 Integral Tracking Control for a Piezoelectric Actuator System

Authors: J. H. Park, S. C. Jeong, J. H. Koo, H. Y. Jung, S. M. Lee

Abstract:

We propose an integral tracking control method for a piezoelectric actuator system. The proposed method achieves the output tracking without requiring any hysteresis observer or schemes to compensate the hysteresis effect. With the proposed control law, the system is converted into the standard singularly perturbed model. Using Tikhonov-s theorem, we guarantee that the tracking error can be reduced to arbitrarily small bound. A numerical example is given to illustrate the effectiveness of our proposed method.

Keywords: Piezoelectric actuator, tracking control, hysteresis effect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1728
2047 Performance Analysis of a Flexible Manufacturing Line Operated Under Surplus-based Production Control

Authors: K. K. Starkov, A. Y. Pogromsky, I. J. B. F. Adan, J. E. Rooda

Abstract:

In this paper we present our results on the performance analysis of a multi-product manufacturing line. We study the influence of external perturbations, intermediate buffer content and the number of manufacturing stages on the production tracking error of each machine in the multi-product line operated under a surplusbased production control policy. Starting by the analysis of a single machine with multiple production stages (one for each product type), we provide bounds on the production error of each stage. Then, we extend our analysis to a line of multi-stage machines, where similarly, bounds on each production tracking error for each product type, as well as buffer content are obtained. Details on performance of the closed-loop flow line model are illustrated in numerical simulations.

Keywords: Flexible manufacturing systems, tracking systems, discrete time systems, production control, boundary conditions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1472
2046 Realtime Lip Contour Tracking For Audio-Visual Speech Recognition Applications

Authors: Mehran Yazdi, Mehdi Seyfi, Amirhossein Rafati, Meghdad Asadi

Abstract:

Detection and tracking of the lip contour is an important issue in speechreading. While there are solutions for lip tracking once a good contour initialization in the first frame is available, the problem of finding such a good initialization is not yet solved automatically, but done manually. We have developed a new tracking solution for lip contour detection using only few landmarks (15 to 25) and applying the well known Active Shape Models (ASM). The proposed method is a new LMS-like adaptive scheme based on an Auto regressive (AR) model that has been fit on the landmark variations in successive video frames. Moreover, we propose an extra motion compensation model to address more general cases in lip tracking. Computer simulations demonstrate a fair match between the true and the estimated spatial pixels. Significant improvements related to the well known LMS approach has been obtained via a defined Frobenius norm index.

Keywords: Lip contour, Tracking, LMS-Like

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1747
2045 Multiple Moving Talker Tracking by Integration of Two Successive Algorithms

Authors: Kenji Suyama, Masahiro Oshida, Noboru Owada

Abstract:

In this paper, an estimation accuracy of multiple moving talker tracking using a microphone array is improved. The tracking can be achieved by the adaptive method in which two algorithms are integrated, namely, the PAST (Projection Approximation Subspace Tracking) algorithm and the IPLS (Interior Point Least Square) algorithm. When either talker begins to speak again after a silent period, an appropriate feasible region for an evaluation function of the IPLS algorithm might not be set. Then, the tracking fails due to the incorrect updating. Therefore, if an increment of the number of active talkers is detected, the feasible region must be reset. Then, a low cost realization is required for the high speed tracking and a high accuracy realization is desired for the precise tracking. In this paper, the directions roughly estimated using the delayed-sum-array method are used for the resetting. Several results of experiments performed in an actual room environment show the effectiveness of the proposed method.

Keywords: moving talkers tracking, microphone array, signal subspace

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1299
2044 Stability and Bifurcation Analysis of a Discrete Gompertz Model with Time Delay

Authors: Yingguo Li

Abstract:

In this paper, we consider a discrete Gompertz model with time delay. Firstly, the stability of the equilibrium of the system is investigated by analyzing the characteristic equation. By choosing the time delay as a bifurcation parameter, we prove that Neimark- Sacker bifurcations occur when the delay passes a sequence of critical values. The direction and stability of the Neimark-Sacker are determined by using normal forms and centre manifold theory. Finally, some numerical simulations are given to verify the theoretical analysis.

Keywords: Gompertz system, Neimark-Sacker bifurcation, stability, time delay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1886
2043 The Fundamental Reliance of Iterative Learning Control on Stability Robustness

Authors: Richard W. Longman

Abstract:

Iterative learning control aims to achieve zero tracking error of a specific command. This is accomplished by iteratively adjusting the command given to a feedback control system, based on the tracking error observed in the previous iteration. One would like the iterations to converge to zero tracking error in spite of any error present in the model used to design the learning law. First, this need for stability robustness is discussed, and then the need for robustness of the property that the transients are well behaved. Methods of producing the needed robustness to parameter variations and to singular perturbations are presented. Then a method involving reverse time runs is given that lets the world behavior produce the ILC gains in such a way as to eliminate the need for a mathematical model. Since the real world is producing the gains, there is no issue of model error. Provided the world behaves linearly, the approach gives an ILC law with both stability robustness and good transient robustness, without the need to generate a model.

Keywords: Iterative learning control, stability robustness, monotonic convergence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1555
2042 The Evaluation of the Performance of Different Filtering Approaches in Tracking Problem and the Effect of Noise Variance

Authors: Mohammad Javad Mollakazemi, Farhad Asadi, Aref Ghafouri

Abstract:

Performance of different filtering approaches depends on modeling of dynamical system and algorithm structure. For modeling and smoothing the data the evaluation of posterior distribution in different filtering approach should be chosen carefully. In this paper different filtering approaches like filter KALMAN, EKF, UKF, EKS and smoother RTS is simulated in some trajectory tracking of path and accuracy and limitation of these approaches are explained. Then probability of model with different filters is compered and finally the effect of the noise variance to estimation is described with simulations results.

Keywords: Gaussian approximation, KALMAN smoother, Parameter estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1723
2041 A Sensorless Robust Tracking Control of an Implantable Rotary Blood Pump for Heart Failure Patients

Authors: Mohsen A. Bakouri, Andrey V. Savkin, Abdul-Hakeem H. Alomari, Robert F. Salamonsen, Einly Lim, Nigel H. Lovell

Abstract:

Physiological control of a left ventricle assist device (LVAD) is generally a complicated task due to diverse operating environments and patient variability. In this work, a tracking control algorithm based on sliding mode and feed forward control for a class of discrete-time single input single output (SISO) nonlinear uncertain systems is presented. The controller was developed to track the reference trajectory to a set operating point without inducing suction in the ventricle. The controller regulates the estimated mean pulsatile flow Qp and mean pulsatility index of pump rotational speed PIω that was generated from a model of the assist device. We recall the principle of the sliding mode control theory then we combine the feed-forward control design with the sliding mode control technique to follow the reference trajectory. The uncertainty is replaced by its upper and lower boundary. The controller was tested in a computer simulation covering two scenarios (preload and ventricular contractility). The simulation results prove the effectiveness and the robustness of the proposed controller

Keywords: robust control system, discrete-sliding mode, left ventricularle assist devicse, pulsatility index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1834
2040 Solar Tracking System Using a Refrigerant as Working Medium for Solar Energy Conversion

Authors: S. Sendhil Kumar, S. N. Vijayan

Abstract:

Utilization of solar energy can be found in various domestic and industrial applications. The performance of any solar collector is largely affected by various parameters such as glazing, absorber plate, top covers, and heating pipes. Technology improvements have brought us another method for conversion of solar energy to direct electricity using solar photovoltaic system. Utilization and extraction of solar energy is the biggest problem in these conversion methods. This paper aims to overcome these problems and take the advantages of available energy from solar by maximizing the utilization through solar tracking system using a refrigerant as a working medium. The use of this tracking system can help increase the efficiency of conversion devices by maximum utilization of solar energy. The dual axis tracking system gives maximum energy output compared to single axis tracking system.

Keywords: Refrigerant, solar collector, solar energy, solar panel, solar tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1959
2039 Online Pose Estimation and Tracking Approach with Siamese Region Proposal Network

Authors: Cheng Fang, Lingwei Quan, Cunyue Lu

Abstract:

Human pose estimation and tracking are to accurately identify and locate the positions of human joints in the video. It is a computer vision task which is of great significance for human motion recognition, behavior understanding and scene analysis. There has been remarkable progress on human pose estimation in recent years. However, more researches are needed for human pose tracking especially for online tracking. In this paper, a framework, called PoseSRPN, is proposed for online single-person pose estimation and tracking. We use Siamese network attaching a pose estimation branch to incorporate Single-person Pose Tracking (SPT) and Visual Object Tracking (VOT) into one framework. The pose estimation branch has a simple network structure that replaces the complex upsampling and convolution network structure with deconvolution. By augmenting the loss of fully convolutional Siamese network with the pose estimation task, pose estimation and tracking can be trained in one stage. Once trained, PoseSRPN only relies on a single bounding box initialization and producing human joints location. The experimental results show that while maintaining the good accuracy of pose estimation on COCO and PoseTrack datasets, the proposed method achieves a speed of 59 frame/s, which is superior to other pose tracking frameworks.

Keywords: Computer vision, Siamese network, pose estimation, pose tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1105
2038 A Robust Visual Tracking Algorithm with Low-Rank Region Covariance

Authors: Songtao Wu, Yuesheng Zhu, Ziqiang Sun

Abstract:

Region covariance (RC) descriptor is an effective and efficient feature for visual tracking. Current RC-based tracking algorithms use the whole RC matrix to track the target in video directly. However, there exist some issues for these whole RCbased algorithms. If some features are contaminated, the whole RC will become unreliable, which results in lost object-tracking. In addition, if some features are very discriminative to the background, other features are still processed and thus reduce the efficiency. In this paper a new robust tracking method is proposed, in which the whole RC matrix is decomposed into several low rank matrices. Those matrices are dynamically chosen and processed so as to achieve a good tradeoff between discriminability and complexity. Experimental results have shown that our method is more robust to complex environment changes, especially either when occlusion happens or when the background is similar to the target compared to other RC-based methods.

Keywords: Visual tracking, region covariance descriptor, lowrankregion covariance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1535