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Abstract—Bayesian approach can be used for parameter 

identification and extraction in state space models and its ability for 
analyzing sequence of data in dynamical system is proved in different 
literatures. In this paper, adaptive Kalman filter with Bayesian 
approach for identification of variances in measurement parameter 
noise is developed. Next, it is applied for estimation of the dynamical 
state and measurement data in discrete linear dynamical system. This 
algorithm at each step time estimates noise variance in measurement 
noise and state of system with Kalman filter. Next, approximation is 
designed at each step separately and consequently sufficient statistics 
of the state and noise variances are computed with a fixed-point 
iteration of an adaptive Kalman filter. Different simulations are applied 
for showing the influence of noise variance in measurement data on 
algorithm. Firstly, the effect of noise variance and its distribution on 
detection and identification performance is simulated in Kalman filter 
without Bayesian formulation. Then, simulation is applied to adaptive 
Kalman filter with the ability of noise variance tracking in 
measurement data. In these simulations, the influence of noise 
distribution of measurement data in each step is estimated, and true 
variance of data is obtained by algorithm and is compared in different 
scenarios. Afterwards, one typical modeling of nonlinear state space 
model with inducing noise measurement is simulated by this approach. 
Finally, the performance and the important limitations of this 
algorithm in these simulations are explained.  
 

Keywords—Adaptive filtering, Bayesian approach Kalman 
filtering approach, variance tracking. 

I. INTRODUCTION 
HE Kalman Filter (KF) can be estimated dynamical state 
from noisy measurements. In this method, dynamic and 

measurement processes can be approximated by linear 
Gaussian state space models. This model is a practical model in 
engineering due to the modeling of various noises where 
Gaussian white noise corrupted the measurements [1]. The 
extended Kalman filter (EKF) and the unscented Kalman filter 
(UKF) encompass this method to nonlinear dynamical states 
and measurement. The EKF employs a Kalman filter for system 
dynamics that results from the linearization of the original non-
linear filter dynamics around the previous state estimates by 
forming a Gaussian approximation to the posterior state 
distribution in the modeling [2]–[4]. A serious constraint in 
EKF and UKF is that they adopt prior knowledge of the 
measurement and the parameters of the dynamical model, 
including the noise statistics status.  

In different signal processing applications, there are many 
sources of interference and noise in systems, and in these 
conditions, the efficiency of the algorithm for computation and 
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estimation is crucial [5]-[7]. In general, the exact knowledge of 
the noise statistics characteristics is not obvious, and we don’t 
have exact information about it in many practical situations. 
GPS positioning systems or fault detection systems are systems 
with these properties [8], [9].  

For solving this problem and solving uncertain parameters in 
the model, there is a different algorithm that among those, 
Adaptive Kalman Filters (AKF) are common in literature [10]. 
This approach can be estimated noise statistics characteristics 
or noise variances. In other words, it computed variance-
covariance matrices relating to the state and the measurement 
models. Moreover, the estimation of dynamical states and 
measurement can be done simultaneously [11]. Intuitively, in 
AKF, the algorithm adjusts its knowledge about state and 
measurement matrices values according to the gap between 
predicted estimates and the current measurements.  

In literature, different adaptive filtering approaches are 
divided to four categories; Bayesian, maximum likelihood, 
correlation analysis and also covariance matching methods 
[12]. The first two categories assume the noise covariance 
estimation problem as a parameter estimation problem. 

Bayesian approach is more common in respected to the other 
approaches and in different computational signal processing, 
this approach is used. As said before, estimation of uncertainty 
with dynamical states is important in filtering problems and 
Bayesian approach is a strong method for approximation of 
posterior status of these disturbances. In the Bayesian inference 
approach, the posterior probability density function (pdf) is 
computed from their noise covariance matrix by applying the 
Bayes ‘formula recursively [13].  

Some algorithms like particle filter [14], [15] used Bayesian 
formulations for noise adaptive filtering. On the other hand, 
reference like [16] is used and developed Bayesian approach 
based on approximation of posterior distribution and one of the 
important advantage of this algorithm is related to low 
computational cost time. Moreover, references like [17] is 
developed an approach for recursive Bayesian inference and its 
approach is suitable for signal processing applications and also 
for nonlinear dynamical system approach [18], [19]. 

In recent years, an approximation algorithm for linear and 
nonlinear state space models with unknown and varying 
variances is proposed. In references [20], [21] a Kalman 
smoother with variational structure is proposed for 
approximation of stationary noises. On the other hand, in 
reference [22], a fixed form approach for models with time 
varying variances is proposed. One disadvantage of its 
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approach is preparation of exact model of dynamical system 
and also statistical information should be accurate and available 
for the algorithm. 

In general, the Bayesian approach suffers computationally 
because of the numerical integration over a very large 
parameter space. In reference [23], Bayesian adaptive Kalman 
filter is formulated and it can be used for variances in 
measurement and with dynamical state. But in this paper, we 
developed a series of simulation in conditions when the 
variance of measurement has different distribution and 
statistical characteristics and then performance of approach for 
following and tracking this variance is developed. Also, a 
nonlinear state-space model is applied to these approaches, and 
estimation of states and measurement of system with adaptive 
Kalman filter is investigated. In many references, this method 
is used extensively regarding the approximation of the joint 
posterior distribution of the state and the noise variances.  

Finally, the paper is structured as follows. In this paper, the 
first overall structure of algorithm for Kalman filter is shown 
schematically. Next, the problem formulation of adaptive 
Kalman filter and steps for update and estimation in this 
approach is explained. Then, in section of experimental results, 
a series of simulations are applied and accordingly performance 
of approach for estimation of variance is simulated. Finally, in 
a nonlinear state space model for pendulum, this approach is 
applied and estimation of measurement for this model is 
calculated.  

II. OVERALL STRUCTURE OF ALGORITHM 
In this section the overall steps of algorithm from dynamical 

state formation to the Bayesian approach for the recursion 
update for posterior estimation is shown in Fig. 1. 

 

 
Fig. 1 Overall structure of algorithm 

III. PROBLEM FORMULATION 
Summary formulation of algorithm is explained in the below. 

A. Overall modeling of Kalman filter 
The discrete-time linear state space model can be considered 

here as below in (1).  
 = +  = +                                        (1) 

 
where   ∼ N(0, ) is the Gaussian process noise, rk ∼ N(0, 

 ) is the measurement noise with assumed covariance , and 
the initial state has a prior Gaussian distribution x0 ∼ N(m(0) , 
P(0) ).  

The measurement  is a d-dimensional vector and the  is 
an n-dimensional vector. Here,  is an unknown variable and  is an observed variable. Time is shown by k in the matrices 
of   , ,  and they are assumed to be known and also with 

 .  is measurement matrix and  is the measurement noise 
covariance matrix. Also, the parameters of the initial state m0, 
P0 are assumed to be known in initial condition. The estimation 
of states is recursively applied using two Kalman filter steps as 
below.  
1. Prediction step:  

 m =A m  
                        P =A p A + Q                (2) 

 
2. Update step: 

 
                        S = H  P H + Σ                           K = P  H S       
                        C =  m + K (y − H m )       
                        P = P − K S K                             (3) 
                     

where  is the a priori state mean,  is the posteriori state 
mean,  is the priori state covariance and  is the posteriori 
state covariance.  In this algorithm, observation noise variance 
parameters, σ , = 1. . . d, are stochastic with independent 
dynamic models. We represent the diagonal covariance matrix 
for this parameter as = diag (σ , ...σ , ). Also, the 
construction of a suitable dynamical model of the observation 
noise variances is represented by p (  | ). Dynamic models 
of the states and the variance parameters are assumed 
independent according to below equation. 

 
P (  ,  | , ) =  ( | ) (  | )          (4) 

 
The objective of Bayesian optimal filtering of the above 

model is to calculate the posterior distribution p (  ,  | : ). 
Generally, the well-known recursive solution to this filtering 
problem consists of the following steps [23]. Firstly, the 
recursion begins from the prior distribution p ( , ). Next, the 
predictive distribution of the state and measurement noise 
covariance  is specified by the Chapman-Kolmogorov 
equation. Finally, by having the measurement , the predictive 
distribution above is updated to a posterior distribution by the 
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Bayes’ rule that is written in (5). 
 

P (x  , Σ  |y : )∝ p (y |x  ,Σ )p(x , Σ  |y : )               (5) 
 

In [23] the recursion and suitable dynamics for the 
observation noise variances for the posterior update is 
proposed. 

B. Bayesian Inference Formulation  
Conditional distribution for   and  is computed from 

the measurements … . An Independent Inverse-Gamma 
distribution is modeled as follows in (6). 

 

      (6) 
 

This approximation is chosen, because the Inverse- Gamma 
distribution is the prior distribution. Also, using an Inverse-
Gamma model for variances of Gaussian models is common in 
Bayesian analysis [23] because the dynamics of the state and 
observation noise variances are assumed to be independent. It 
should be said in the posterior update step, the state and 
observation noise variance parameters will be coupled through 
the like-lihood distribution p ( | , ). We follow the 
standard variational Bayesian approach for a free form 
approximate distribution in P ( , | : ) as follows: 

 
P (x , Σ |y : )≈ Q (x ) Q (Σ )                     (7) 

 
By forming the standard variational Bayesian (VB) approach 

[23] the finalized prediction updated cycle is obtained as 
follows. 

 Q (x )=N (x |m , P )                       (8) 
 

        (9) 
 

where the parameters , , , , ,  are obtained by 
following equations. 

 m =m + P H (H P H + Σ^) (y − H m ) P = P − P H (H P H + Σ^) H P   α , =1/2+ α ,  β , =β , +1/2 [(y − H m ) + (H P H ) ]             (10) 
 

where i=1,…, d and 
 Σ^=diag (β , / α , , … . , β , / α , )              (11) 
 

Also dynamic model of noise variance usually is not defined 
but it can be modeled by approximate posteriors. First in 
algorithm expected measurement noise precisions is considered 
constant, and then their variances are increased by a factor of ρ 
(ρ ∈ (0, 1]). This is obtained by following equations as follows.  

 

                               (12) 
 

                               (13)  
 

In these equations ρ=1 correspond to stationary variances and 
lower values increase their assumed fluctuation. In the 
modeling if the cross correlation between the prediction and 
observation error is ignored, then covariance becomes diagonal 
matrix and in many practical situation it is a proper assumption. 
The fixed point iteration of the algorithm is computed as 
bellows. Firstly, the prediction of the parameters of the 
predicted distribution is as follows. 

 
                   m = A m  
                   P = A P A + Q  
                   α , =ρ  α ,             i=1,…, d 
                   β , =ρ β ,                  i=1,…, d                          (14) 

 
Then in the update section firstly we set ( ) =  , ( )=  ,  , =1/2+ ,  and ,( ) = ,  for i=1,…d. Next, 

iterate the following equations in N steps: 
 

 Σ^( )=diag (β ,( )/α ,( ),…., β ,( )/α ,( )) m( )=m +P H (H P H + Σ^( )) (y − H m ) P( )=P -P H (H P H + Σ^( )) H P  β ,( )=β , +1/2 (y − H m( )) +1/2(H P( )H )  
i=1…d                                 (15) 
 

   And set , = ,( ), = ( ), = ( ). 
 

In general, the algorithm should be started from a prior of the 
form: 

 
P (x , Σ )=N(x |m , P )∏ Inv − Gamma (σ , |α , , β , ) 

(16) 
 

And the approximation formed by the algorithm on step k is 
as follows. 

 
P(x ,Σ |y : )≈ N(x |m ,P ) ∏ Inv − Gamma 

(σ , |α , , β , )                           (17) 

IV. EXPERIMENTAL RESULTS  
In this section, different simulation results are explained. 

Firstly, conditions when noise variance cannot be estimated by 
approach are presented in two different situations. Then, 
simulation results is done for adaptive Kalman filter with ability 
of approximation of variance in measurement of data and 
influence of variance in measurement and its distribution is 
discussed. Also, in simulation results the variance of 
measurement is increased to show the effect of variance in the 
algorithm. This artificial data has time varying error and also 
has unknown time varying variance. An example of the time 
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varying nature of the errors involved, is the initialization of the 
sensor error states.  

A. Adaptive Kalman Filter without Ability of Approximation 
of Variances 

The first simulated data is shown in Fig. 2 and it is related to 
measurement of system with its estimation and then estimated 
variance trajectory with true variance is compared and plotted 
in Fig. 3. Also, the default variation of true variance is as 
follows. Firstly, in the simulation the measurement noise has 
the variance of o.2 and in the time step of 100 the variance 
quickly is increased to 1.45 and around time 200; it again 
quickly decrease to value 0.7. Because of wrong initial 
condition in variance the well matching is not obtained. But, in 
the adaptive Kalman filter the transition probabilities can be 
chosen in such a way that probability of switching mode from 
one mode to another is matched to the variation of variance with 
some try and error. 

 

 
Fig. 2 Estimated measurement data with typical Kalman filter 

 

 
Fig. 3 Comparison of true and estimated variance trajectory 

 
In Fig .4 measurement data of another dynamical system is 

plotted with its estimation, and also this simulation has more 
noise from previous simulation. Next, the performance of 
Kalman filter without ability of estimation of variance is plotted 
in Fig. 5.  

In the second simulation, due to the higher variance noise in 
measurement data, the performance of Kalman filter for 
variance following is poor and this makes that variational 
Bayesian for approximating of noise and variance is more 
important. 

 
Fig. 4 Estimated measurement data with typical Kalman filter  

 

 
Fig. 5 Comparison of true and estimated variance trajectory  

 

B. Adaptive Kalman Filter with Ability of Approximation of 
Variances with Erupted Initial Condition 

In this section adaptive Kalman filter has ability of variance 
tracking of noise measurement data and it uses the variational 
Bayesian approach. Also, a Gaussian random variable with 
unknown time varying variance  is applied. Firstly, the 
Variance trajectory in different initial conditions is developed 
in measurement data and in this situation again the variance 
following is erupted with unrelated initial condition. This 
irregularity in initial condition has important effect on variance 
noise tracking in measurement, because the resulted error due 
to this condition cannot be removed in short steps of algorithm. 
Therefore, it causes deviation from the exact variance 
trajectory, and these conditions in three different simulations 
are modeled as bellows.  

Estimation of measurement and dynamical states with this 
approach for three different simulations are plotted in Figs. 6 to 
8 and respected trajectory following with adaptive Kalman 
filter are plotted in Figs. 9 to 11 respectively. 

 

 
Fig. 6 Estimated measurement data and dynamical states with 

adaptive Kalman filter with Bayesian approach 
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Fig. 7 Estimated measurement data and dynamical states with 

adaptive Kalman filter with Bayesian approach 
 

 
Fig. 8 Estimated measurement data and dynamical states with 

adaptive Kalman filter with Bayesian approach 
 

 
Fig. 9 Comparison of true and estimated noise variance trajectory 

with adaptive Kalman filter with Bayesian approach 
 

 
Fig. 10 Comparison of true and estimated noise variance trajectory 

with adaptive Kalman filter with Bayesian approach 

 
Fig. 11 Comparison of true and estimated noise variance trajectory 

with adaptive Kalman filter with Bayesian approach 
 

Although this approach use approximation to the variance 
noise distribution and forms gaussian state distribution 
conditionality in each time step, but in high dimensional data 
with irrevalent variance structute, the assumption of center of 
limit for modeling of this approach is not practical well. 
Furthermore, due to the recursive nature of the filter estimation, 
the performance of the filter is dependent on a priori estimate. 
This means that the adaptive filter is not entirely self-tuning so 
we should reconsider the dimension of data for using limitation 
of this approach according to the above simulations. 

C. Second Modeling for Simple Pendulum with Noise 
Disturbance 

In this section the continuous-discrete sequential is applied 
to estimation of a partially measured simple pendulum model 
which is distorted by a random noise term. The stochastic 
differential equation for the angular position of a simple 
pendulum, which is distorted by random white noise 
accelerations w(t) with spectral density q can be written as 
bellows. 

 

   
2

2
2 sind x a x w t

dt
 

                        (18) 
 

If we define the state as x = (x dx/dt) then, it is changed to 
state space form and the model can be written as bellows. 

 

   
1 2dx x

dt


                                  (19) 
 

 2 sin 12 a x dx t dd                 (20) 
 

Assume that the state of the pendulum is measured once per 
unit time and the measurements are disturbed by Gaussian 
measurement noise with an unknown variance  then a 
suitable model in this case can be written as bellows. 

  
 

2
1

2 2 2
0 0

,

Inv ,

k ky N x t

X v



 




                    (21) 
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In Fig. 12 this model with measurement data, actual and 
estimated signal are plotted. According to the Fig. 12, it is 
evident that the estimation of signal is most generated in area 
with high concentration of data and in this area the correlation 
of our data is higher so this algorithm can detect this important 
information for tracking and estimation of our signal. In this 
situation when high level of noise is inputted in measurement 
of data, this algorithm cannot follow the true signal well and 
this simulation is plotted in Fig. 13. In summary, when this 
method is chosen in high dimensional data with high noise 
variance of measurement, limitation of this approach to this 
condition should be investigated properly in the algorithms. 

 

 
Fig. 12 Distribution of measurement with estimation of signal 

 

 
Fig. 13 Distribution of measurement with estimation of signal with 

more noise variance 

V. CONCLUSION 
In this article, we have presented adaptive Kalman filtering 

algorithm, which is based on recursively forming 
approximations to the joint distribution of state and noise 
parameters. The performance of the different variance 
measurement has been demonstrated in a simulated application. 
Then, simulation is executed to adaptive Kalman filter with 
ability of noise variance tracking in measurement data. In these 
simulations, the effect of noise distribution of measurement 
data in each step is calculated and true variance of data is 
obtained by algorithm and is compared in different scenarios.  
Then, limitation and performance of this approach in high 
dimensional data are simulated and discussed. 
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