Search results for: signal subspace
1237 Blind Channel Estimation for Frequency Hopping System Using Subspace Based Method
Authors: M. M. Qasaymeh, M. A. Khodeir
Abstract:
Subspace channel estimation methods have been studied widely, where the subspace of the covariance matrix is decomposed to separate the signal subspace from noise subspace. The decomposition is normally done by using either the eigenvalue decomposition (EVD) or the singular value decomposition (SVD) of the auto-correlation matrix (ACM). However, the subspace decomposition process is computationally expensive. This paper considers the estimation of the multipath slow frequency hopping (FH) channel using noise space based method. In particular, an efficient method is proposed to estimate the multipath time delays by applying multiple signal classification (MUSIC) algorithm which is based on the null space extracted by the rank revealing LU (RRLU) factorization. As a result, precise information is provided by the RRLU about the numerical null space and the rank, (i.e., important tool in linear algebra). The simulation results demonstrate the effectiveness of the proposed novel method by approximately decreasing the computational complexity to the half as compared with RRQR methods keeping the same performance.
Keywords: Time Delay Estimation, RRLU, RRQR, MUSIC, LS-ESPRIT, LS-ESPRIT, Frequency Hopping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20361236 A Propagator Method like Algorithm for Estimation of Multiple Real-Valued Sinusoidal Signal Frequencies
Authors: Sambit Prasad Kar, P.Palanisamy
Abstract:
In this paper a novel method for multiple one dimensional real valued sinusoidal signal frequency estimation in the presence of additive Gaussian noise is postulated. A computationally simple frequency estimation method with efficient statistical performance is attractive in many array signal processing applications. The prime focus of this paper is to combine the subspace-based technique and a simple peak search approach. This paper presents a variant of the Propagator Method (PM), where a collaborative approach of SUMWE and Propagator method is applied in order to estimate the multiple real valued sine wave frequencies. A new data model is proposed, which gives the dimension of the signal subspace is equal to the number of frequencies present in the observation. But, the signal subspace dimension is twice the number of frequencies in the conventional MUSIC method for estimating frequencies of real-valued sinusoidal signal. The statistical analysis of the proposed method is studied, and the explicit expression of asymptotic (large-sample) mean-squared-error (MSE) or variance of the estimation error is derived. The performance of the method is demonstrated, and the theoretical analysis is substantiated through numerical examples. The proposed method can achieve sustainable high estimation accuracy and frequency resolution at a lower SNR, which is verified by simulation by comparing with conventional MUSIC, ESPRIT and Propagator Method.
Keywords: Frequency estimation, peak search, subspace-based method without eigen decomposition, quadratic convex function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17261235 Restarted Generalized Second-Order Krylov Subspace Methods for Solving Quadratic Eigenvalue Problems
Authors: Liping Zhou, Liang Bao, Yiqin Lin, Yimin Wei, Qinghua Wu
Abstract:
This article is devoted to the numerical solution of large-scale quadratic eigenvalue problems. Such problems arise in a wide variety of applications, such as the dynamic analysis of structural mechanical systems, acoustic systems, fluid mechanics, and signal processing. We first introduce a generalized second-order Krylov subspace based on a pair of square matrices and two initial vectors and present a generalized second-order Arnoldi process for constructing an orthonormal basis of the generalized second-order Krylov subspace. Then, by using the projection technique and the refined projection technique, we propose a restarted generalized second-order Arnoldi method and a restarted refined generalized second-order Arnoldi method for computing some eigenpairs of largescale quadratic eigenvalue problems. Some theoretical results are also presented. Some numerical examples are presented to illustrate the effectiveness of the proposed methods.Keywords: Quadratic eigenvalue problem, Generalized secondorder Krylov subspace, Generalized second-order Arnoldi process, Projection technique, Refined technique, Restarting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18531234 Self-Tuning Robot Control Based on Subspace Identification
Authors: Mathias Marquardt, Peter Dünow, Sandra Baßler
Abstract:
The paper describes the use of subspace based identification methods for auto tuning of a state space control system. The plant is an unstable but self balancing transport robot. Because of the unstable character of the process it has to be identified from closed loop input-output data. Based on the identified model a state space controller combined with an observer is calculated. The subspace identification algorithm and the controller design procedure is combined to a auto tuning method. The capability of the approach was verified in a simulation experiments under different process conditions.Keywords: Auto tuning, balanced robot, closed loop identification, subspace identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11191233 Finite Element and Subspace Identification Approaches to Model Development of a Smart Acoustic Box with Experimental Verification
Authors: Tamara Nestorović, Jean Lefèvre, Stefan Ringwelski, Ulrich Gabbert
Abstract:
Two approaches for model development of a smart acoustic box are suggested in this paper: the finite element (FE) approach and the subspace identification. Both approaches result in a state-space model, which can be used for obtaining the frequency responses and for the controller design. In order to validate the developed FE model and to perform the subspace identification, an experimental set-up with the acoustic box and dSPACE system was used. Experimentally obtained frequency responses show good agreement with the frequency responses obtained from the FE model and from the identified model.
Keywords: Acoustic box, experimental verification, finite element model, subspace identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15531232 Performance Evaluation of Music and Minimum Norm Eigenvector Algorithms in Resolving Noisy Multiexponential Signals
Authors: Abdussamad U. Jibia, Momoh-Jimoh E. Salami
Abstract:
Eigenvector methods are gaining increasing acceptance in the area of spectrum estimation. This paper presents a successful attempt at testing and evaluating the performance of two of the most popular types of subspace techniques in determining the parameters of multiexponential signals with real decay constants buried in noise. In particular, MUSIC (Multiple Signal Classification) and minimum-norm techniques are examined. It is shown that these methods perform almost equally well on multiexponential signals with MUSIC displaying better defined peaks.
Keywords: Eigenvector, minimum norm, multiexponential, subspace.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17301231 Target Signal Detection Using MUSIC Spectrum in Noise Environment
Authors: Sangjun Park, Sangbae Jeong, Moonsung Han, Minsoo hahn
Abstract:
In this paper, a target signal detection method using multiple signal classification (MUSIC) algorithm is proposed. The MUSIC algorithm is a subspace-based direction of arrival (DOA) estimation method. The algorithm detects the DOAs of multiple sources using the inverse of the eigenvalue-weighted eigen spectra. To apply the algorithm to target signal detection for GSC-based beamforming, we utilize its spectral response for the target DOA in noisy conditions. For evaluation of the algorithm, the performance of the proposed target signal detection method is compared with that of the normalized cross-correlation (NCC), the fixed beamforming, and the power ratio method. Experimental results show that the proposed algorithm significantly outperforms the conventional ones in receiver operating characteristics(ROC) curves.Keywords: Beamforming, direction of arrival, multiple signal classification, target signal detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25321230 ISC–Intelligent Subspace Clustering, A Density Based Clustering Approach for High Dimensional Dataset
Authors: Sunita Jahirabadkar, Parag Kulkarni
Abstract:
Many real-world data sets consist of a very high dimensional feature space. Most clustering techniques use the distance or similarity between objects as a measure to build clusters. But in high dimensional spaces, distances between points become relatively uniform. In such cases, density based approaches may give better results. Subspace Clustering algorithms automatically identify lower dimensional subspaces of the higher dimensional feature space in which clusters exist. In this paper, we propose a new clustering algorithm, ISC – Intelligent Subspace Clustering, which tries to overcome three major limitations of the existing state-of-art techniques. ISC determines the input parameter such as є – distance at various levels of Subspace Clustering which helps in finding meaningful clusters. The uniform parameters approach is not suitable for different kind of databases. ISC implements dynamic and adaptive determination of Meaningful clustering parameters based on hierarchical filtering approach. Third and most important feature of ISC is the ability of incremental learning and dynamic inclusion and exclusions of subspaces which lead to better cluster formation.
Keywords: Density based clustering, high dimensional data, subspace clustering, dynamic parameter setting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20111229 A Text Clustering System based on k-means Type Subspace Clustering and Ontology
Authors: Liping Jing, Michael K. Ng, Xinhua Yang, Joshua Zhexue Huang
Abstract:
This paper presents a text clustering system developed based on a k-means type subspace clustering algorithm to cluster large, high dimensional and sparse text data. In this algorithm, a new step is added in the k-means clustering process to automatically calculate the weights of keywords in each cluster so that the important words of a cluster can be identified by the weight values. For understanding and interpretation of clustering results, a few keywords that can best represent the semantic topic are extracted from each cluster. Two methods are used to extract the representative words. The candidate words are first selected according to their weights calculated by our new algorithm. Then, the candidates are fed to the WordNet to identify the set of noun words and consolidate the synonymy and hyponymy words. Experimental results have shown that the clustering algorithm is superior to the other subspace clustering algorithms, such as PROCLUS and HARP and kmeans type algorithm, e.g., Bisecting-KMeans. Furthermore, the word extraction method is effective in selection of the words to represent the topics of the clusters.
Keywords: Subspace Clustering, Text Mining, Feature Weighting, Cluster Interpretation, Ontology
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24501228 Video Data Mining based on Information Fusion for Tamper Detection
Authors: Girija Chetty, Renuka Biswas
Abstract:
In this paper, we propose novel algorithmic models based on information fusion and feature transformation in crossmodal subspace for different types of residue features extracted from several intra-frame and inter-frame pixel sub-blocks in video sequences for detecting digital video tampering or forgery. An evaluation of proposed residue features – the noise residue features and the quantization features, their transformation in cross-modal subspace, and their multimodal fusion, for emulated copy-move tamper scenario shows a significant improvement in tamper detection accuracy as compared to single mode features without transformation in cross-modal subspace.Keywords: image tamper detection, digital forensics, correlation features image fusion
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18861227 Multiple Moving Talker Tracking by Integration of Two Successive Algorithms
Authors: Kenji Suyama, Masahiro Oshida, Noboru Owada
Abstract:
In this paper, an estimation accuracy of multiple moving talker tracking using a microphone array is improved. The tracking can be achieved by the adaptive method in which two algorithms are integrated, namely, the PAST (Projection Approximation Subspace Tracking) algorithm and the IPLS (Interior Point Least Square) algorithm. When either talker begins to speak again after a silent period, an appropriate feasible region for an evaluation function of the IPLS algorithm might not be set. Then, the tracking fails due to the incorrect updating. Therefore, if an increment of the number of active talkers is detected, the feasible region must be reset. Then, a low cost realization is required for the high speed tracking and a high accuracy realization is desired for the precise tracking. In this paper, the directions roughly estimated using the delayed-sum-array method are used for the resetting. Several results of experiments performed in an actual room environment show the effectiveness of the proposed method.Keywords: moving talkers tracking, microphone array, signal subspace
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13301226 Gene Expression Data Classification Using Discriminatively Regularized Sparse Subspace Learning
Authors: Chunming Xu
Abstract:
Sparse representation which can represent high dimensional data effectively has been successfully used in computer vision and pattern recognition problems. However, it doesn-t consider the label information of data samples. To overcome this limitation, we develop a novel dimensionality reduction algorithm namely dscriminatively regularized sparse subspace learning(DR-SSL) in this paper. The proposed DR-SSL algorithm can not only make use of the sparse representation to model the data, but also can effective employ the label information to guide the procedure of dimensionality reduction. In addition,the presented algorithm can effectively deal with the out-of-sample problem.The experiments on gene-expression data sets show that the proposed algorithm is an effective tool for dimensionality reduction and gene-expression data classification.Keywords: sparse representation, dimensionality reduction, labelinformation, sparse subspace learning, gene-expression data classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14411225 Blind Channel Estimation Based on URV Decomposition Technique for Uplink of MC-CDMA
Authors: Pradya Pornnimitkul, Suwich Kunaruttanapruk, Bamrung Tau Sieskul, Somchai Jitapunkul
Abstract:
In this paper, we investigate a blind channel estimation method for Multi-carrier CDMA systems that use a subspace decomposition technique. This technique exploits the orthogonality property between the noise subspace and the received user codes to obtain channel of each user. In the past we used Singular Value Decomposition (SVD) technique but SVD have most computational complexity so in this paper use a new algorithm called URV Decomposition, which serve as an intermediary between the QR decomposition and SVD, replaced in SVD technique to track the noise space of the received data. Because of the URV decomposition has almost the same estimation performance as the SVD, but has less computational complexity.
Keywords: Channel estimation, MC-CDMA, SVD, URV.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17731224 An Improved Adaptive Dot-Shape Beamforming Algorithm Research on Frequency Diverse Array
Authors: Yanping Liao, Zenan Wu, Ruigang Zhao
Abstract:
Frequency diverse array (FDA) beamforming is a technology developed in recent years, and its antenna pattern has a unique angle-distance-dependent characteristic. However, the beam is always required to have strong concentration, high resolution and low sidelobe level to form the point-to-point interference in the concentrated set. In order to eliminate the angle-distance coupling of the traditional FDA and to make the beam energy more concentrated, this paper adopts a multi-carrier FDA structure based on proposed power exponential frequency offset to improve the array structure and frequency offset of the traditional FDA. The simulation results show that the beam pattern of the array can form a dot-shape beam with more concentrated energy, and its resolution and sidelobe level performance are improved. However, the covariance matrix of the signal in the traditional adaptive beamforming algorithm is estimated by the finite-time snapshot data. When the number of snapshots is limited, the algorithm has an underestimation problem, which leads to the estimation error of the covariance matrix to cause beam distortion, so that the output pattern cannot form a dot-shape beam. And it also has main lobe deviation and high sidelobe level problems in the case of limited snapshot. Aiming at these problems, an adaptive beamforming technique based on exponential correction for multi-carrier FDA is proposed to improve beamforming robustness. The steps are as follows: first, the beamforming of the multi-carrier FDA is formed under linear constrained minimum variance (LCMV) criteria. Then the eigenvalue decomposition of the covariance matrix is performed to obtain the diagonal matrix composed of the interference subspace, the noise subspace and the corresponding eigenvalues. Finally, the correction index is introduced to exponentially correct the small eigenvalues of the noise subspace, improve the divergence of small eigenvalues in the noise subspace, and improve the performance of beamforming. The theoretical analysis and simulation results show that the proposed algorithm can make the multi-carrier FDA form a dot-shape beam at limited snapshots, reduce the sidelobe level, improve the robustness of beamforming, and have better performance.
Keywords: Multi-carrier frequency diverse array, adaptive beamforming, correction index, limited snapshot, robust.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6631223 Design of Medical Information Storage System – ECG Signal
Authors: A. Rubiano F, N. Olarte, D. Lara
Abstract:
This paper presents the design, implementation and results related to the storage system of medical information associated to the ECG (Electrocardiography) signal. The system includes the signal acquisition modules, the preprocessing and signal processing, followed by a module of transmission and reception of the signal, along with the storage and web display system of the medical platform. The tests were initially performed with this signal, with the purpose to include more biosignal under the same system in the future.Keywords: Acquisition, ECG Signal, Storage, Web Platform
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22511222 Electronic System Design for Respiratory Signal Processing
Authors: C. Matiz C., N. Olarte L., A. Rubiano F.
Abstract:
This paper presents the design related to the electronic system design of the respiratory signal, including phases for processing, followed by the transmission and reception of this signal and finally display. The processing of this signal is added to the ECG and temperature sign, put up last year. Under this scheme is proposed that in future also be conditioned blood pressure signal under the same final printed circuit and worked.Keywords: Conditioning, Respiratory Signal, Storage, Teleconsultation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23431221 High Resolution Methods Based On Rank Revealing Triangular Factorizations
Authors: M. Bouri, S. Bourennane
Abstract:
In this paper, we propose a novel method for subspace estimation used high resolution method without eigendecomposition where the sample Cross-Spectral Matrix (CSM) is replaced by upper triangular matrix obtained from LU factorization. This novel method decreases the computational complexity. The method relies on a recently published result on Rank-Revealing LU (RRLU) factorization. Simulation results demonstrates that the new algorithm outperform the Householder rank-revealing QR (RRQR) factorization method and the MUSIC in the low Signal to Noise Ratio (SNR) scenarios.
Keywords: Factorization, Localization, Matrix, Signalsubspace.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13541220 Note to the Global GMRES for Solving the Matrix Equation AXB = F
Authors: Fatemeh Panjeh Ali Beik
Abstract:
In the present work, we propose a new projection method for solving the matrix equation AXB = F. For implementing our new method, generalized forms of block Krylov subspace and global Arnoldi process are presented. The new method can be considered as an extended form of the well-known global generalized minimum residual (Gl-GMRES) method for solving multiple linear systems and it will be called as the extended Gl-GMRES (EGl- GMRES). Some new theoretical results have been established for proposed method by employing Schur complement. Finally, some numerical results are given to illustrate the efficiency of our new method.
Keywords: Matrix equation, Iterative method, linear systems, block Krylov subspace method, global generalized minimum residual (Gl-GMRES).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18281219 Stochastic Resonance in Nonlinear Signal Detection
Authors: Youguo Wang, Lenan Wu
Abstract:
Stochastic resonance (SR) is a phenomenon whereby the signal transmission or signal processing through certain nonlinear systems can be improved by adding noise. This paper discusses SR in nonlinear signal detection by a simple test statistic, which can be computed from multiple noisy data in a binary decision problem based on a maximum a posteriori probability criterion. The performance of detection is assessed by the probability of detection error Per . When the input signal is subthreshold signal, we establish that benefit from noise can be gained for different noises and confirm further that the subthreshold SR exists in nonlinear signal detection. The efficacy of SR is significantly improved and the minimum of Per can dramatically approach to zero as the sample number increases. These results show the robustness of SR in signal detection and extend the applicability of SR in signal processing.Keywords: Probability of detection error, signal detection, stochastic resonance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15231218 Grid-based Supervised Clustering - GBSC
Authors: Pornpimol Bungkomkhun, Surapong Auwatanamongkol
Abstract:
This paper presents a supervised clustering algorithm, namely Grid-Based Supervised Clustering (GBSC), which is able to identify clusters of any shapes and sizes without presuming any canonical form for data distribution. The GBSC needs no prespecified number of clusters, is insensitive to the order of the input data objects, and is capable of handling outliers. Built on the combination of grid-based clustering and density-based clustering, under the assistance of the downward closure property of density used in bottom-up subspace clustering, the GBSC can notably reduce its search space to avoid the memory confinement situation during its execution. On two-dimension synthetic datasets, the GBSC can identify clusters with different shapes and sizes correctly. The GBSC also outperforms other five supervised clustering algorithms when the experiments are performed on some UCI datasets.Keywords: supervised clustering, grid-based clustering, subspace clustering
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15981217 Noise-Improved Signal Detection in Nonlinear Threshold Systems
Authors: Youguo Wang, Lenan Wu
Abstract:
We discuss the signal detection through nonlinear threshold systems. The detection performance is assessed by the probability of error Per . We establish that: (1) when the signal is complete suprathreshold, noise always degrades the signal detection both in the single threshold system and in the parallel array of threshold devices. (2) When the signal is a little subthreshold, noise degrades signal detection in the single threshold system. But in the parallel array, noise can improve signal detection, i.e., stochastic resonance (SR) exists in the array. (3) When the signal is predominant subthreshold, noise always can improve signal detection and SR always exists not only in the single threshold system but also in the parallel array. (4) Array can improve signal detection by raising the number of threshold devices. These results extend further the applicability of SR in signal detection.Keywords: Probability of error, signal detection, stochasticresonance, threshold system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14251216 Wavelet Based Residual Method of Detecting GSM Signal Strength Fading
Authors: Danladi Ali, Onah Festus Iloabuchi
Abstract:
In this paper, GSM signal strength was measured in order to detect the type of the signal fading phenomenon using onedimensional multilevel wavelet residual method and neural network clustering to determine the average GSM signal strength received in the study area. The wavelet residual method predicted that the GSM signal experienced slow fading and attenuated with MSE of 3.875dB. The neural network clustering revealed that mostly -75dB, -85dB and -95dB were received. This means that the signal strength received in the study is a weak signal.
Keywords: One-dimensional multilevel wavelets, path loss, GSM signal strength, propagation and urban environment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19471215 A Novel Microarray Biclustering Algorithm
Authors: Chieh-Yuan Tsai, Chuang-Cheng Chiu
Abstract:
Biclustering aims at identifying several biclusters that reveal potential local patterns from a microarray matrix. A bicluster is a sub-matrix of the microarray consisting of only a subset of genes co-regulates in a subset of conditions. In this study, we extend the motif of subspace clustering to present a K-biclusters clustering (KBC) algorithm for the microarray biclustering issue. Besides minimizing the dissimilarities between genes and bicluster centers within all biclusters, the objective function of the KBC algorithm additionally takes into account how to minimize the residues within all biclusters based on the mean square residue model. In addition, the objective function also maximizes the entropy of conditions to stimulate more conditions to contribute the identification of biclusters. The KBC algorithm adopts the K-means type clustering process to efficiently make the partition of K biclusters be optimized. A set of experiments on a practical microarray dataset are demonstrated to show the performance of the proposed KBC algorithm.Keywords: Microarray, Biclustering, Subspace clustering, Meansquare residue model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16031214 All Optical Wavelength Conversion Based On Four Wave Mixing in Optical Fiber
Authors: Surinder Singh, Gursewak Singh Lovkesh
Abstract:
We have designed wavelength conversion based on four wave mixing in an optical fiber at 10 Gb/s. The power of converted signal increases with increase in signal power. The converted signal power is investigated as a function of input signal power and pump power. On comparison of converted signal power at different value of input signal power, we observe that best converted signal power is obtained at -2 dBm input signal power for both up conversion as well as for down conversion. Further, FWM efficiency, quality factor is observed for increase in input signal power and optical fiber length.Keywords: FWM, Optical fiber, Quality, Wavelength Converter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22311213 Krylov Model Order Reduction of a Thermal Subsea Model
Authors: J. Šindler, A. Suleng, T. Jelstad Olsen, P. Bárta
Abstract:
A subsea hydrocarbon production system can undergo planned and unplanned shutdowns during the life of the field. The thermal FEA is used to simulate the cool down to verify the insulation design of the subsea equipment, but it is also used to derive an acceptable insulation design for the cold spots. The driving factors of subsea analyses require fast responding and accurate models of the equipment cool down. This paper presents cool down analysis carried out by a Krylov subspace reduction method, and compares this approach to the commonly used FEA solvers. The model considered represents a typical component of a subsea production system, a closed valve on a dead leg. The results from the Krylov reduction method exhibits the least error and requires the shortest computational time to reach the solution. These findings make the Krylov model order reduction method very suitable for the above mentioned subsea applications.
Keywords: Model order reduction, Krylov subspace, subsea production system, finite element.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23101212 Development of Intelligent Time/Frequency Based Signal Detection Algorithm for Intrusion Detection System
Authors: Waqas Ahmed, S Sajjad Haider Zaidi
Abstract:
For the past couple of decades Weak signal detection is of crucial importance in various engineering and scientific applications. It finds its application in areas like Wireless communication, Radars, Aerospace engineering, Control systems and many of those. Usually weak signal detection requires phase sensitive detector and demodulation module to detect and analyze the signal. This article gives you a preamble to intrusion detection system which can effectively detect a weak signal from a multiplexed signal. By carefully inspecting and analyzing the respective signal, this system can successfully indicate any peripheral intrusion. Intrusion detection system (IDS) is a comprehensive and easy approach towards detecting and analyzing any signal that is weakened and garbled due to low signal to noise ratio (SNR). This approach finds significant importance in applications like peripheral security systems.Keywords: Data Acquisition, fast frequency transforms, Lab VIEW software, weak signal detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25021211 Global GMRES with Deflated Restarting for Families of Shifted Linear Systems
Authors: Jing Meng, Peiyong Zhu, Houbiao Li
Abstract:
Many problems in science and engineering field require the solution of shifted linear systems with multiple right hand sides and multiple shifts. To solve such systems efficiently, the implicitly restarted global GMRES algorithm is extended in this paper. However, the shift invariant property could no longer hold over the augmented global Krylov subspace due to adding the harmonic Ritz matrices. To remedy this situation, we enforce the collinearity condition on the shifted system and propose shift implicitly restarted global GMRES. The new method not only improves the convergence but also has a potential to simultaneously compute approximate solution for the shifted systems using only as many matrix vector multiplications as the solution of the seed system requires. In addition, some numerical experiments also confirm the effectiveness of our method.
Keywords: Shifted linear systems, global Krylov subspace, GLGMRESIR, GLGMRESIRsh, harmonic Ritz matrix, harmonic Ritz vector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19581210 Damage Localization of Deterministic-Stochastic Systems
Authors: Yen-Po Wang, Ming-Chih Huang, Ming-Lian Chang
Abstract:
A scheme integrated with deterministic–stochastic subspace system identification and the method of damage localization vector is proposed in this study for damage detection of structures based on seismic response data. A series of shaking table tests using a five-storey steel frame has been conducted in National Center for Research on Earthquake Engineering (NCREE), Taiwan. Damage condition is simulated by reducing the cross-sectional area of some of the columns at the bottom. Both single and combinations of multiple damage conditions at various locations have been considered. In the system identification analysis, either full or partial observation conditions have been taken into account. It has been shown that the damaged stories can be identified from global responses of the structure to earthquakes if sufficiently observed. In addition to detecting damage(s) with respect to the intact structure, identification of new or extended damages of the as-damaged (ill-conditioned) counterpart has also been studied. The proposed scheme proves to be effective.
Keywords: Damage locating vectors, deterministic-stochastic subspace system, shaking table tests, system identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16911209 Algorithm of Measurement of Noise Signal Power in the Presence of Narrowband Interference
Authors: Alexey V. Klyuev, Valery P. Samarin, Viktor F. Klyuev
Abstract:
A power measurement algorithm of the input mix components of the noise signal and narrowband interference is considered using functional transformations of the input mix in the postdetection processing channel. The algorithm efficiency analysis has been carried out for different interference-to-signal ratio. Algorithm performance features have been explored by numerical experiment results.
Keywords: Noise signal, continuous narrowband interference, signal power, spectrum width, detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13861208 Detecting Abnormal ECG Signals Utilising Wavelet Transform and Standard Deviation
Authors: Dejan Stantic, Jun Jo
Abstract:
ECG contains very important clinical information about the cardiac activities of the heart. Often the ECG signal needs to be captured for a long period of time in order to identify abnormalities in certain situations. Such signal apart of a large volume often is characterised by low quality due to the noise and other influences. In order to extract features in the ECG signal with time-varying characteristics at first need to be preprocessed with the best parameters. Also, it is useful to identify specific parts of the long lasting signal which have certain abnormalities and to direct the practitioner to those parts of the signal. In this work we present a method based on wavelet transform, standard deviation and variable threshold which achieves 100% accuracy in identifying the ECG signal peaks and heartbeat as well as identifying the standard deviation, providing a quick reference to abnormalities.
Keywords: Electrocardiogram-ECG, Arrhythmia, Signal Processing, Wavelet Transform, Standard Deviation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2898