Search results for: Chip design
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4924

Search results for: Chip design

4924 3D Network-on-Chip with on-Chip DRAM: An Empirical Analysis for Future Chip Multiprocessor

Authors: Thomas Canhao Xu, Bo Yang, Alexander Wei Yin, Pasi Liljeberg, Hannu Tenhunen

Abstract:

With the increasing number of on-chip components and the critical requirement for processing power, Chip Multiprocessor (CMP) has gained wide acceptance in both academia and industry during the last decade. However, the conventional bus-based onchip communication schemes suffer from very high communication delay and low scalability in large scale systems. Network-on-Chip (NoC) has been proposed to solve the bottleneck of parallel onchip communications by applying different network topologies which separate the communication phase from the computation phase. Observing that the memory bandwidth of the communication between on-chip components and off-chip memory has become a critical problem even in NoC based systems, in this paper, we propose a novel 3D NoC with on-chip Dynamic Random Access Memory (DRAM) in which different layers are dedicated to different functionalities such as processors, cache or memory. Results show that, by using our proposed architecture, average link utilization has reduced by 10.25% for SPLASH-2 workloads. Our proposed design costs 1.12% less execution cycles than the traditional design on average.

Keywords: 3D integration, network-on-chip, memory-on-chip, DRAM, chip multiprocessor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2446
4923 A Single-chip Proportional to Absolute Temperature Sensor Using CMOS Technology

Authors: AL.AL, M. B. I. Reaz, S. M. A. Motakabber, Mohd Alauddin Mohd Ali

Abstract:

Nowadays it is a trend for electronic circuit designers to integrate all system components on a single-chip. This paper proposed the design of a single-chip proportional to absolute temperature (PTAT) sensor including a voltage reference circuit using CEDEC 0.18m CMOS Technology. It is a challenge to design asingle-chip wide range linear response temperature sensor for many applications. The channel widths between the compensation transistor and the reference transistor are critical to design the PTAT temperature sensor circuit. The designed temperature sensor shows excellent linearity between -100°C to 200° and the sensitivity is about 0.05mV/°C. The chip is designed to operate with a single voltage source of 1.6V.

Keywords: PTAT, single-chip circuit, linear temperature sensor, CMOS technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3431
4922 The Methodology of Flip Chip Using Astro Place and Route Tool

Authors: Rohaya Abdul Wahab, Raja Mohd Fuad Tengku Aziz, Nazaliza Othman, Sharifah Saleh, Nabihah Razali, Rozaimah Baharim, Md Hanif Md Nasir

Abstract:

This paper will discuss flip chip methodology, in which I/O pads, standard cells, macros and bump cells array are placed in the floorplan, then routed using Astro place and route tool. Final DRC and LVS checking is done using Calibre verification tool. The design vehicle to run this methodology is an OpenRISC design targeted to Silterra 0.18 micrometer technology with 6 metal layers for routing. Astro has extensive support for flip chip placement and routing. Astro tool commands for flip chip are straightforward approach like the conventional standard wire bond packaging. However since we do not have flip chip commands in our Astro tool, no LEF file for bump cell and no LEF file for flip chip I/O pad, we create our own methodology to prepare for future flip chip tapeout. 

Keywords: Astro, bump cell, Calibre, flip chip, LEF, methodology, SCHEME, TCL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2757
4921 A Study of Recent Contribution on Simulation Tools for Network-on-Chip

Authors: Muthana Saleh Alalaki, Michael Opoku Agyeman

Abstract:

The growth in the number of Intellectual Properties (IPs) or the number of cores on the same chip becomes a critical issue in System-on-Chip (SoC) due to the intra-communication problem between the chip elements. As a result, Network-on-Chip (NoC) has emerged as a system architecture to overcome intra-communication issues. This paper presents a study of recent contributions on simulation tools for NoC. Furthermore, an overview of NoC is covered as well as a comparison between some NoC simulators to help facilitate research in on-chip communication.

Keywords: Network-on-Chip, System-on-Chip, embedded systems, computer architecture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1453
4920 The Design and Implementation of Classifying Bird Sounds

Authors: Haiyi Zhang, Jianli Guo, Daqian Yang

Abstract:

This Classifying Bird Sounds (chip notes) project-s purpose is to reduce the unwanted noise from recorded bird sound chip notes, design a scheme to detect differences and similarities between recorded chip notes, and classify bird sound chip notes. The technologies of determining the similarities of sound waves have been used in communication, sound engineering and wireless sound applications for many years. Our research is focused on the similarity of chip notes, which are the sounds from different birds. The program we use is generated by Microsoft Cµ.

Keywords: Classify Bird Sounds, Noise Filter, High-pass, Lowpass, Band-pass, Band-stop Filter, FIR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1244
4919 Low Cost Chip Set Selection Algorithm for Multi-way Partitioning of Digital System

Authors: Jae Young Park, Soongyu Kwon, Kyu Han Kim, Hyeong Geon Lee, Jong Tae Kim

Abstract:

This paper considers the problem of finding low cost chip set for a minimum cost partitioning of a large logic circuits. Chip sets are selected from a given library. Each chip in the library has a different price, area, and I/O pin. We propose a low cost chip set selection algorithm. Inputs to the algorithm are a netlist and a chip information in the library. Output is a list of chip sets satisfied with area and maximum partitioning number and it is sorted by cost. The algorithm finds the sorted list of chip sets from minimum cost to maximum cost. We used MCNC benchmark circuits for experiments. The experimental results show that all of chip sets found satisfy the multiple partitioning constraints.

Keywords: lowest cost chip set, MCNC benchmark, multi-way partitioning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1503
4918 SoC Communication Architecture Modeling

Authors: Ziaddin Daie Koozekanani, Mina Zolfy Lighvan

Abstract:

One of the most challengeable issues in ESL (Electronic System Level) design is the lack of a general modeling scheme for on chip communication architecture. In this paper some of the mostly used methodologies for modeling and representation of on chip communication are investigated. Our goal is studying the existing methods to extract the requirements of a general representation scheme for communication architecture synthesis. The next step, will be introducing a modeling and representation method for being used in automatically synthesis process of on chip communication architecture.

Keywords: Communication architecture, System on Chip, Communication Modeling and Representation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1415
4917 Design of a Pulse Generator Based on a Programmable System-on-Chip (PSoC) for Ultrasonic Applications

Authors: Pedro Acevedo, Carlos Díaz, Mónica Vázquez, Joel Durán

Abstract:

This paper describes the design of a pulse generator based on the Programmable System-on-Chip (PSoC) module. In this module, using programmable logic is possible to implement different pulses which are required for ultrasonic applications, either in a single channel or multiple channels. This module can operate with programmable frequencies from 3-74 MHz; its programming may be versatile covering a wide range of ultrasonic applications. It is ideal for low-power ultrasonic applications where PZT or PVDF transducers are used.

Keywords: pulse generator, PVDF, Programmable System-on-Chip (PSoC), ultrasonic transducer

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2004
4916 Electrode Engineering for On-Chip Liquid Driving by Using Electrokinetic Effect

Authors: Reza Hadjiaghaie Vafaie, Aysan Madanpasandi, Behrooz Zare Desari, Seyedmohammad Mousavi

Abstract:

High lamination in microchannel is one of the main challenges in on-chip components like micro total analyzer systems and lab-on-a-chips. Electro-osmotic force is highly effective in chip-scale. This research proposes a microfluidic-based micropump for low ionic strength solutions. Narrow microchannels are designed to generate an efficient electroosmotic flow near the walls. Microelectrodes are embedded in the lateral sides and actuated by low electric potential to generate pumping effect inside the channel. Based on the simulation study, the fluid velocity increases by increasing the electric potential amplitude. We achieve a net flow velocity of 100 µm/s, by applying +/- 2 V to the electrode structures. Our proposed low voltage design is of interest in conventional lab-on-a-chip applications.

Keywords: Integration, electrokinetic, on-chip, fluid pumping, microfluidic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 844
4915 Design and Microfabrication of a High Throughput Thermal Cycling Platform with Various Annealing Temperatures

Authors: Sin J. Chen, Jyh J. Chen

Abstract:

This study describes a micro device integrated with multi-chamber for polymerase chain reaction (PCR) with different annealing temperatures. The device consists of the reaction polydimethylsiloxane (PDMS) chip, a cover glass chip, and is equipped with cartridge heaters, fans, and thermocouples for temperature control. In this prototype, commercial software is utilized to determine the geometric and operational parameters those are responsible for creating the denaturation, annealing, and extension temperatures within the chip. Two cartridge heaters are placed at two sides of the chip and maintained at two different temperatures to achieve a thermal gradient on the chip during the annealing step. The temperatures on the chip surface are measured via an infrared imager. Some thermocouples inserted into the reaction chambers are used to obtain the transient temperature profiles of the reaction chambers during several thermal cycles. The experimental temperatures compared to the simulated results show a similar trend. This work should be interesting to persons involved in the high-temperature based reactions and genomics or cell analysis.

Keywords: Polymerase chain reaction, thermal cycles, temperature gradient, micro-fabrication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1649
4914 A High Level Implementation of a High Performance Data Transfer Interface for NoC

Authors: Mansi Jhamb, R. K. Sharma, A. K. Gupta

Abstract:

The distribution of a single global clock across a chip has become the major design bottleneck for high performance VLSI systems owing to the power dissipation, process variability and multicycle cross-chip signaling. A Network-on-Chip (NoC) architecture partitioned into several synchronous blocks has become a promising approach for attaining fine-grain power management at the system level. In a NoC architecture the communication between the blocks is handled asynchronously. To interface these blocks on a chip operating at different frequencies, an asynchronous FIFO interface is inevitable. However, these asynchronous FIFOs are not required if adjacent blocks belong to the same clock domain. In this paper, we have designed and analyzed a 16-bit asynchronous micropipelined FIFO of depth four, with the awareness of place and route on an FPGA device. We have used a commercially available Spartan 3 device and designed a high speed implementation of the asynchronous 4-phase micropipeline. The asynchronous FIFO implemented on the FPGA device shows 76 Mb/s throughput and a handshake cycle of 109 ns for write and 101.3 ns for read at the simulation under the worst case operating conditions (voltage = 0.95V) on a working chip at the room temperature.

Keywords: Asynchronous, FIFO, FPGA, GALS, Network-on- Chip (NoC), VHDL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2040
4913 Chip Formation during Turning Multiphase Microalloyed Steel

Authors: V.Sivaraman, S. Sankaran, L. Vijayaraghavan

Abstract:

Machining through turning was carried out in a lathe to study the chip formation of Multiphase Ferrite (F-B-M) microalloyed steel. Taguchi orthogonal array was employed to perform the machining. Continuous and discontinuous chips were formed for different cutting parameters like speed, feed and depth of cut. Optical and scanning electron microscope was employed to identify the chip morphology.

Keywords: Multiphase microalloyed steel, chip formation, Taguchi technique, turning, cutting parameters

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1641
4912 An Electrically Small Silver Ink Printed FR4 Antenna for RF Transceiver Chip CC1101

Authors: F. Majeed, D. V. Thiel, M. Shahpari

Abstract:

An electrically small meander line antenna is designed for impedance matching with RF transceiver chip CC1101. The design provides the flexibility of tuning the reactance of the antenna over a wide range of values: highly capacitive to highly inductive. The antenna was printed with silver ink on FR4 substrate using the screen printing design process. The antenna impedance was perfectly matched to CC1101 at 433 MHz. The measured radiation efficiency of the antenna was 81.3% at resonance. The 3 dB and 10 dB fractional bandwidth of the antenna was 14.5% and 4.78%, respectively. The read range of the antenna was compared with a copper wire monopole antenna over a distance of five meters. The antenna, with a perfect impedance match with RF transceiver chip CC1101, shows improvement in the read range compared to a monopole antenna over the specified distance.

Keywords: Meander line antenna, RFID, Silver ink printing, Impedance matching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1283
4911 Self Compensating ON Chip LDO Voltage Regulator in 180nm

Authors: SreehariRao Patri, K. S. R. KrishnaPrasad

Abstract:

An on chip low drop out voltage regulator that employs elegant compensation scheme is presented in this paper. The novelty in this design is that the device parasitic capacitances are exploited for compensation at different loads. The proposed LDO is designed to provide a constant voltage of 1.2V and is implemented in UMC 180 nano meter CMOS technology. The voltage regulator presented improves stability even at lighter loads and enhances line and load regulation.

Keywords: Analog, LDO, SOC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2545
4910 Long-Term On-Chip Storage and Release of Liquid Reagents for Diagnostic Lab-on-a-Chip Applications

Authors: D. Czurratis, Y. Beyl, S. Zinober, R. Zengerle, F. Lärmer

Abstract:

A new concept for long-term reagent storage for Labon- a-Chip (LoC) devices is described. Here we present a polymer multilayer stack with integrated stick packs for long-term storage of several liquid reagents, which are necessary for many diagnostic applications. Stick packs are widely used in packaging industry for storing solids and liquids for long time. The storage concept fulfills two main requirements: First, a long-term storage of reagents in stick packs without significant losses and interaction with surroundings, second, on demand releasing of liquids, which is realized by pushing a membrane against the stick pack through pneumatic pressure. This concept enables long-term on-chip storage of liquid reagents at room temperature and allows an easy implementation in different LoC devices.

Keywords: Lab-on-a-Chip, long-term storage, reagent storage, stick pack.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3062
4909 Interaction Effect of Feed Rate and Cutting Speed in CNC-Turning on Chip Micro-Hardness of 304- Austenitic Stainless Steel

Authors: G. H. Senussi

Abstract:

The present work is concerned with the effect of turning process parameters (cutting speed, feed rate, and depth of cut) and distance from the center of work piece as input variables on the chip micro-hardness as response or output. Three experiments were conducted; they were used to investigate the chip micro-hardness behavior at diameter of work piece for 30[mm], 40[mm], and 50[mm]. Response surface methodology (R.S.M) is used to determine and present the cause and effect of the relationship between true mean response and input control variables influencing the response as a two or three dimensional hyper surface. R.S.M has been used for designing a three factor with five level central composite rotatable factors design in order to construct statistical models capable of accurate prediction of responses. The results obtained showed that the application of R.S.M can predict the effect of machining parameters on chip micro-hardness. The five level factorial designs can be employed easily for developing statistical models to predict chip micro-hardness by controllable machining parameters. Results obtained showed that the combined effect of cutting speed at it?s lower level, feed rate and depth of cut at their higher values, and larger work piece diameter can result increasing chi micro-hardness.

Keywords: Machining Parameters, Chip Micro-Hardness, CNCMachining, 304-Austenic Stainless Steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3283
4908 LFSR Counter Implementation in CMOS VLSI

Authors: Doshi N. A., Dhobale S. B., Kakade S. R.

Abstract:

As chip manufacturing technology is suddenly on the threshold of major evaluation, which shrinks chip in size and performance, LFSR (Linear Feedback Shift Register) is implemented in layout level which develops the low power consumption chip, using recent CMOS, sub-micrometer layout tools. Thus LFSR counter can be a new trend setter in cryptography and is also beneficial as compared to GRAY & BINARY counter and variety of other applications. This paper compares 3 architectures in terms of the hardware implementation, CMOS layout and power consumption, using Microwind CMOS layout tool. Thus it provides solution to a low power architecture implementation of LFSR in CMOS VLSI.

Keywords: Chip technology, Layout level, LFSR, Pass transistor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4512
4907 Comparative Analysis of Transient-Fault Tolerant Schemes for Network on Chips

Authors: Muhammad Ali, Awais Adnan

Abstract:

Network on a chip (NoC) has been proposed as a viable solution to counter the inefficiency of buses in the current VLSI on-chip interconnects. However, as the silicon chip accommodates more transistors, the probability of transient faults is increasing, making fault tolerance a key concern in scaling chips. In packet based communication on a chip, transient failures can corrupt the data packet and hence, undermine the accuracy of data communication. In this paper, we present a comparative analysis of transient fault tolerant techniques including end-to-end, node-by-node, and stochastic communication based on flooding principle.

Keywords: NoC, fault-tolerance, transient faults.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1363
4906 Classifying Bio-Chip Data using an Ant Colony System Algorithm

Authors: Minsoo Lee, Yearn Jeong Kim, Yun-mi Kim, Sujeung Cheong, Sookyung Song

Abstract:

Bio-chips are used for experiments on genes and contain various information such as genes, samples and so on. The two-dimensional bio-chips, in which one axis represent genes and the other represent samples, are widely being used these days. Instead of experimenting with real genes which cost lots of money and much time to get the results, bio-chips are being used for biological experiments. And extracting data from the bio-chips with high accuracy and finding out the patterns or useful information from such data is very important. Bio-chip analysis systems extract data from various kinds of bio-chips and mine the data in order to get useful information. One of the commonly used methods to mine the data is classification. The algorithm that is used to classify the data can be various depending on the data types or number characteristics and so on. Considering that bio-chip data is extremely large, an algorithm that imitates the ecosystem such as the ant algorithm is suitable to use as an algorithm for classification. This paper focuses on finding the classification rules from the bio-chip data using the Ant Colony algorithm which imitates the ecosystem. The developed system takes in consideration the accuracy of the discovered rules when it applies it to the bio-chip data in order to predict the classes.

Keywords: Ant Colony System, DNA chip data, Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1467
4905 An Address-Oriented Transmit Mechanism for GALS NoC

Authors: Yuanyuan Zhang, Guang Sun, Li Su, Depeng Jin, Lieguang Zeng

Abstract:

Since Network-on-Chip (NoC) uses network interfaces (NIs) to improve the design productivity, by now, there have been a few papers addressing the design and implementation of a NI module. However, none of them considered the difference of address encoding methods between NoC and the traditional bus-shared architecture. On the basis of this difference, in the paper, we introduce a transmit mechanism to solve such a problem for global asynchronous locally synchronous (GALS) NoC. Furthermore, we give the concrete implementation of the NI module in this transmit mechanism. Finally, we evaluate its performance and area overhead by a VHDL-based cycle-accurate RTL model and simulation results confirm the validity of this address-oriented transmit mechanism.

Keywords: Network-on-Chip, Network Interface, Open CoreProtocol, Address.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1344
4904 Independent Spanning Trees on Systems-on-chip Hypercubes Routing

Authors: Eduardo Sant'Ana da Silva, Andre Luiz Pires Guedes, Eduardo Todt

Abstract:

Independent spanning trees (ISTs) provide a number of advantages in data broadcasting. One can cite the use in fault tolerance network protocols for distributed computing and bandwidth. However, the problem of constructing multiple ISTs is considered hard for arbitrary graphs. In this paper we present an efficient algorithm to construct ISTs on hypercubes that requires minimum resources to be performed.

Keywords: Hypercube, Independent Spanning Trees, Networks On Chip, Systems On Chip.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1886
4903 Mathematical Modeling Experimental Approach of the Friction on the Tool-Chip Interface of Multicoated Carbide Turning Inserts

Authors: Samy E. Oraby, Ayman M. Alaskari

Abstract:

The importance of machining process in today-s industry requires the establishment of more practical approaches to clearly represent the intimate and severe contact on the tool-chipworkpiece interfaces. Mathematical models are developed using the measured force signals to relate each of the tool-chip friction components on the rake face to the operating cutting parameters in rough turning operation using multilayers coated carbide inserts. Nonlinear modeling proved to have high capability to detect the nonlinear functional variability embedded in the experimental data. While feedrate is found to be the most influential parameter on the friction coefficient and its related force components, both cutting speed and depth of cut are found to have slight influence. Greater deformed chip thickness is found to lower the value of friction coefficient as the sliding length on the tool-chip interface is reduced.

Keywords: Mathematical modeling, Cutting forces, Frictionforces, Friction coefficient and Chip ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3124
4902 Design and Implementation of Real-Time Automatic Censoring System on Chip for Radar Detection

Authors: Imron Rosyadi, Ridha A. Djemal, Saleh A. Alshebeili

Abstract:

Design and implementation of a novel B-ACOSD CFAR algorithm is presented in this paper. It is proposed for detecting radar target in log-normal distribution environment. The BACOSD detector is capable to detect automatically the number interference target in the reference cells and detect the real target by an adaptive threshold. The detector is implemented as a System on Chip on FPGA Altera Stratix II using parallelism and pipelining technique. For a reference window of length 16 cells, the experimental results showed that the processor works properly with a processing speed up to 115.13MHz and processing time0.29 ┬Ás, thus meets real-time requirement for a typical radar system.

Keywords: CFAR, FPGA, radar.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3111
4901 An Improved Design of Area Efficient Two Bit Comparator

Authors: Shashank Gautam, Pramod Sharma

Abstract:

In present era, development of digital circuits, signal processors and other integrated circuits, magnitude comparators are challenged by large area and more power consumption. Comparator is most basic circuit that performs comparison. This paper presents a technique to design a two bit comparator which consumes less area and power. DSCH and MICROWIND version 3 are used to design the schematic and design the layout of the schematic, observe the performance parameters at different nanometer technologies respectively.

Keywords: Chip design, consumed power, layout area, two bit comparator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1218
4900 Closed form Delay Model for on-Chip VLSIRLCG Interconnects for Ramp Input for Different Damping Conditions

Authors: Susmita Sahoo, Madhumanti Datta, Rajib Kar

Abstract:

Fast delay estimation methods, as opposed to simulation techniques, are needed for incremental performance driven layout synthesis. On-chip inductive effects are becoming predominant in deep submicron interconnects due to increasing clock speed and circuit complexity. Inductance causes noise in signal waveforms, which can adversely affect the performance of the circuit and signal integrity. Several approaches have been put forward which consider the inductance for on-chip interconnect modelling. But for even much higher frequency, of the order of few GHz, the shunt dielectric lossy component has become comparable to that of other electrical parameters for high speed VLSI design. In order to cope up with this effect, on-chip interconnect has to be modelled as distributed RLCG line. Elmore delay based methods, although efficient, cannot accurately estimate the delay for RLCG interconnect line. In this paper, an accurate analytical delay model has been derived, based on first and second moments of RLCG interconnection lines. The proposed model considers both the effect of inductance and conductance matrices. We have performed the simulation in 0.18μm technology node and an error of as low as less as 5% has been achieved with the proposed model when compared to SPICE. The importance of the conductance matrices in interconnect modelling has also been discussed and it is shown that if G is neglected for interconnect line modelling, then it will result an delay error of as high as 6% when compared to SPICE.

Keywords: Delay Modelling; On-Chip Interconnect; RLCGInterconnect; Ramp Input; Damping; VLSI

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2047
4899 An Innovational Intermittent Algorithm in Networks-On-Chip (NOC)

Authors: Ahmad M. Shafiee, Mehrdad Montazeri, Mahdi Nikdast

Abstract:

Every day human life experiences new equipments more automatic and with more abilities. So the need for faster processors doesn-t seem to finish. Despite new architectures and higher frequencies, a single processor is not adequate for many applications. Parallel processing and networks are previous solutions for this problem. The new solution to put a network of resources on a chip is called NOC (network on a chip). The more usual topology for NOC is mesh topology. There are several routing algorithms suitable for this topology such as XY, fully adaptive, etc. In this paper we have suggested a new algorithm named Intermittent X, Y (IX/Y). We have developed the new algorithm in simulation environment to compare delay and power consumption with elders' algorithms.

Keywords: Computer architecture, parallel computing, NOC, routing algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1677
4898 Formal Verification of Cache System Using a Novel Cache Memory Model

Authors: Guowei Hou, Lixin Yu, Wei Zhuang, Hui Qin, Xue Yang

Abstract:

Formal verification is proposed to ensure the correctness of the design and make functional verification more efficient. As cache plays a vital role in the design of System on Chip (SoC), and cache with Memory Management Unit (MMU) and cache memory unit makes the state space too large for simulation to verify, then a formal verification is presented for such system design. In the paper, a formal model checking verification flow is suggested and a new cache memory model which is called “exhaustive search model” is proposed. Instead of using large size ram to denote the whole cache memory, exhaustive search model employs just two cache blocks. For cache system contains data cache (Dcache) and instruction cache (Icache), Dcache memory model and Icache memory model are established separately using the same mechanism. At last, the novel model is employed to the verification of a cache which is module of a custom-built SoC system that has been applied in practical, and the result shows that the cache system is verified correctly using the exhaustive search model, and it makes the verification much more manageable and flexible.

Keywords: Cache system, formal verification, novel model, System on Chip (SoC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2298
4897 Accurate Crosstalk Analysis for RLC On-Chip VLSI Interconnect

Authors: Susmita Sahoo, Madhumanti Datta, Rajib Kar

Abstract:

This work proposes an accurate crosstalk noise estimation method in the presence of multiple RLC lines for the use in design automation tools. This method correctly models the loading effects of non switching aggressors and aggressor tree branches using resistive shielding effect and realistic exponential input waveforms. Noise peak and width expressions have been derived. The results obtained are at good agreement with SPICE results. Results show that average error for noise peak is 4.7% and for the width is 6.15% while allowing a very fast analysis.

Keywords: Crosstalk, distributed RLC segments, On-Chip interconnect, output response, VLSI, noise peak, noise width.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1644
4896 Pipelined Control-Path Effects on Area and Performance of a Wormhole-Switched Network-on-Chip

Authors: Faizal A. Samman, Thomas Hollstein, Manfred Glesner

Abstract:

This paper presents design trade-off and performance impacts of the amount of pipeline phase of control path signals in a wormhole-switched network-on-chip (NoC). The numbers of the pipeline phase of the control path vary between two- and one-cycle pipeline phase. The control paths consist of the routing request paths for output selection and the arbitration paths for input selection. Data communications between on-chip routers are implemented synchronously and for quality of service, the inter-router data transports are controlled by using a link-level congestion control to avoid lose of data because of an overflow. The trade-off between the area (logic cell area) and the performance (bandwidth gain) of two proposed NoC router microarchitectures are presented in this paper. The performance evaluation is made by using a traffic scenario with different number of workloads under 2D mesh NoC topology using a static routing algorithm. By using a 130-nm CMOS standard-cell technology, our NoC routers can be clocked at 1 GHz, resulting in a high speed network link and high router bandwidth capacity of about 320 Gbit/s. Based on our experiments, the amount of control path pipeline stages gives more significant impact on the NoC performance than the impact on the logic area of the NoC router.

Keywords: Network-on-Chip, Synchronous Parallel Pipeline, Router Architecture, Wormhole Switching

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1482
4895 Trends in Use of Millings in Pavement Maintenance

Authors: Rafiqul Tarefder, Mohiuddin Ahmad, Mohammad Hossain

Abstract:

While millings materials from old pavement surface can be an important component of cost effective maintenance operation, their use in maintenance projects are not uniform and well documented. This study documents the different maintenance practices followed by four transportation districts of New Mexico Department of Transportation (NMDOT) in an attempt to find whether millings are being used in maintenance projects by those districts. Based on existing literature, a questionnaire was developed related to six common maintenance practices. NMDOT district personal were interviewed face to face to discuss and get answers to that questionnaire. It revealed that NMDOT districts mainly use chip seal and patching. Other maintenance procedures such as sand seal, scrub seal, slurry seal, and thin overlay have limited use. Two out of four participating districts do not have any documents on chip sealing; rather they employ the experiences of the chip seal crew. All districts use polymer modified high float emulsion (HFE100P) for chip seal with an application rate ranging from 0.4 to 0.56 gallons per square yard. Chip application rate varies from 15 to 40 lb/ square yard. State wide, the thickness of chip seal varies from 3/8'' to 1'' and life varies from 3 to 10 years. NMDOT districts mainly use three type of patching: pothole, dig-out and blade patch. Pothole patches are used for small potholes and during emergency, dig-out patches are used for all type of potholes sometimes after pothole patching, and blade patch is used when a significant portion of the pavement is damaged. Pothole patches last as low as three days whereas, blade patch lasts as long as 3 years. It was observed that all participating districts use millings in maintenance projects.

Keywords: Chip seal, sand seal, scrub seal, slurry seal, overlay, patching, millings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1996