
Comparative analysis of transient-fault tolerant
schemes for Network on Chips

Muhammad Ali (muhammad.ali73@gmail.com), Awais Adnan (owaisadnan@gmail.com)
Institute of Management Sciences, Peshawar, Pakistan

Abstract—Network on a chip (NoC) has been proposed as a viable
solution to counter the inefficiency of buses in the current VLSI
on-chip interconnects. However, as the silicon chip accommodates
more transistors, the probability of transient faults is increasing,
making fault tolerance a key concern in scaling chips. In packet
based communication on a chip, transient failures can corrupt the data
packet and hence, undermine the accuracy of data communication.
In this paper, we present a comparative analysis of transient fault tol-
erant techniques including end-to-end, node-by-node, and stochastic
communication based on flooding principle.

Keywords—NoC, fault-tolerance, transient faults

I. INTRODUCTION

Transient faults are a common source of errors in today’s
VLSI chips. It has been predicted that the soft error rate will
increase once the gate length reaches 100nm or below [1].
Moreover, with new technologies being introduced on-chip
in order to achieve low power and low cost, the problem of
soft error becomes significant. Traditionally, the combinational
circuits were relatively less prone to transient errors than
the memory elements, however, decreasing feature size and
increasing clock frequencies are exacerbating their prominence
[2]. Some recent research indicates that by 2011 the Soft Error
Rate (SER) in logic circuits per chip will become almost
comparable to SER per chip of the memory elements [3].
This observation will consequently have a significant impact
on the reliability of on-chip routers and links. Hence, it is
imperative to provide some robust protective solutions against
such upsets.

Network on Chips (NoC) have been proposed by researchers
to cope with the inefficiency of on-chip buses in scaling chips
[4], [5]. A NoC can be defined as ‘a network of computational,
storage and I/O resources that are interconnected by a network
of switches, where resources communicate with each other
using addressed data packets routed to their destinations by
the switch fabric [6]”. In contrast to long and shared buses,
the communicating modules on-chip are connected via a net-
work of switches/routers which are connected with each other
through point-to-point links. In this organization, these point-
to-point links represent the buses whereas switches/routers
represent the bus-bridges. The NoC is a communication centric
design paradigm where resources communicate via packets. A
packet is the unit of data that is routed between an origin
and a destination in the interconnection network. The on-chip
communication is governed by a protocol stack irrespective
of the computational infrastructure. The primary objective of
communication-based designs is to separate communication

from computation besides providing a re-usable interconnect
architecture for ultra large scale System on Chips.

With shrinking die size, reliability of future chips is becom-
ing an issue of grave concern. It has been observed that NoCs
will face the same problems due to transient faults as faced
by traditional VLSI chips. Although chips are traditionally
designed with error detection and/or correction codes, such
complex codes incur high energy and area overheads [7]. Since
storage and logic resources are limited on-chip, its important
to realize solutions which are low cost in terms of memory and
energy without compromising on reliability and performance.
Also bringing packet-based communication on-chip introduces
new issues to deal with. A transient fault can scramble one or
more bits in a packet either in the payload or in the header. If
the payload data is corrupt, packet is invalid. Similarly, a bit
flip in the header field can cause a packet to be misrouted. In
either case, a retransmission of the corrupt/missing packet is
required.

Keeping in view the increasing probability of transient
faults and its growing impact on the on-chip interconnects,
we proposed and implemented an efficient end-to-end reliable
protocol for mesh based NoC [8]. The novelty of the protocol
is that it uses a single ACK to acknowledge a predefined set of
packets instead of ACKing each packet. There is no buffering
in the intermediate routers as the packets are only buffered at
the sender side. In this paper, we performed experiments to
compare the performance of our end-to-end reliable protocol
with some of its counterparts. Our experimental results clearly
show that our protocol outperforms the link level and flooding
protocols in terms of achieving high throughput, low packet
drop-rate and little packet overhead.

II. RELATED WORK

Traditionally speaking, error detecting and correcting codes
have been the most common means for handling on-chip
errors. Researchers have explored various error detection and
correction techniques that would apply to NoCs. State of the
art coding schemes have been studied and their significance
has already been analyzed with respect to NoCs [9], [10],
[11], [12]. Error control codes can detect single and multi-bit
errors. Moreover, most of the error correcting schemes can
correct single-bit errors with an overhead of extra hardware.
However, the increase in the complexity and size of VLSI
chips increases the probability of multi-bit errors. Hence, in
packet-based on-chip networks, multi-bit errors can corrupt the
packets which need to be retransmitted. The retransmission

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:7, 2008 

2348International Scholarly and Scientific Research & Innovation 2(7) 2008 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

7,
 2

00
8 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

06
95

.p
df



scheme can be either embedded in the end systems or in the
intermediate level routers. In [13], Bertozzi et al. present a
link level flit-based1 error control model. Every intermediate
router checks the incoming flit for accuracy and generates
ACKs for successful reception of the flit. Besides ACKs,
NACKs are generated for missing flits. The main problem
with this technique is that it generates a large amount of
redundant packets in terms of ACKs/NACKs. Similarly, the
authors of [14] present a link level retransmission technique
with an exception that it only uses NACKs to inform the
sending device for the non-reception of the packets. The key
problem in link based schemes is that each intermediate router
stores and checks the incoming packet for inconsistencies. If
an error is detected, the receiving router drops the packet and
requests for a retransmission from the previous router. Thus,
this scheme bears storage and processing overhead at each
router level.

An alternate approach towards fault tolerance in NoCs
is stochastic communication [15] which is based upon ran-
domized rumor spreading [16]. Such a method employs a
probabilistic flooding algorithm where, if a node has a data
packet to send, it will be forwarded to a randomly chosen set
of tiles in the neighborhood and this way the packet will be
flooded to the whole network of nodes and finally make it to
the destination. The method is quite simple but it has a very
high packet overhead as each tile replicates and forwards the
packet to the adjacent routers. Hence, with increasing number
of senders, the packet overhead will increase exponentially.

We believe that on-chip errors are relatively scarce than
off-chip networks. Moreover, on-chip storage and processing
resources are limited, therefore, an end-to-end protocol is
more effective in NoCs. We have already implemented a
prototype of our protocol and performed various experiments
to evaluate its performance [8]. The basic idea of the protocol
is that the sender buffers and sends a predefined number of
packets continuously to the receiver. The packets are sent in
a sequence. After sending all the packets, the sender waits
for a positive acknowledgement (ACK) from the receiver. The
ack packet carries the sequence number of the next expected
packet, i.e. the start of the next set of packets from the sender.
The receiver receives the packets in-order and sends an ACK.
The main aspect of our protocol is that is uses a single ACK to
acknowledge a set of packets instead of acknowledging every
single packet. Unlike traditional networks where communi-
cation wires are tremendously long and more unreliable, on-
chip wires are physically stitched close to each other offering
tight synchronization and stability. Thus, using a single ACK
for a set of packets will enable the system to perform more
efficiently. The primary purpose of this paper is to compare
and evaluate the performance of above mentioned protocols.

III. NOC MODEL

We visualize the NoC as a 2D mesh topology with packet
level communication: The inter-switch wire is wide enough to
transfer all bits of a packet simultaneously. As argued in [17],
if we have 3 metal layers on the silicon die, then around 300

1a packet is further divided into small chunks called as flits

inter-switch wires can be implemented. This gives us 128-bit
wide data bus in each direction. The packet consists of a pay-
load and header. The header contains identification information
like source and destination, routing information, number of
nodes etc. The payload carries the actual data. We categorize
packets as data packets and ACK packets. Data packets are
long packets carrying the useful data. ACK packets are control
packets including positive and negative ACKs. Routing is
static — XY dimension based. Static routing is simple and
well suitable for mesh based NoCs. We use a bufferless router
which forwards the incoming packet immediately as it arrives
instead of storing it. Hence, there are no queues used in the
routers. In case of conflicts, packets are dropped based on
priorities — the ACK/NACK has the higher priority than the
data packets.

A. Simulation setup

We implemented the three fault tolerant protocols — end-
to-end (E2EEC-G2, link level (LL), and flooding (FL) — in
network simulator ns-2 [18].

The ns-2 is an object-oriented, discrete event driven network
simulator developed at UC Berkely and written in C++ and
OTcl. C++ is used for detailed implementations of protocols
like TCP or any customized ones. TCL scripting, on the other
hand, is the front-end interpreter for ns-2 used for constructing
commands and configuration interfaces.Moreover, a Network
AniMator (NAM) is also provided with the ns-2 in order to
visualize and interact with the system at run-time. Finally,
graphs can be created from the produced results to evaluate and
analyze the performance of the system. Many NoC designers
have used ns-2 to simulate and evaluate the performance of
their design at a higher abstraction level [19], [20], [21], [22].

We simulated a 10×10 prototype of a 2D mesh based NoC
using the ns-2. The sender-receiver pairs were selected ran-
domly. Since different arrangement of the pairs may affect the
overall throughput, therefore, 50 simulations were performed
for each pair. The pair selection process is explained with an
example:

• In order to select 4 pairs of senders/receivers, for instance,
first we generate 8 unique random numbers in the range
of 1 to 100 (since we have 100 nodes in the mesh).
These random numbers are divided into two equal sized
arrays. The first array represent the set of senders and
the second one the receivers. Then the first value of the
array 1 (that is sender 1) is connected to the last value
of array 2 (which is receiver 1). Similarly, the second
value of array 1 is connected to the second last value
of array 2, and so on. This organization is shown in
figure 1. In this example, node 89 is the sender and node
91 becomes the receiver. Similarly, nodes 5, 75, and 23
are sender for nodes 49, 21, and 66 respectively. The
same procedure is repeated 50 times for 4 senders and
receivers. Every time different set of nodes are selected
with varying number of hops between them. The purpose
of these extensive simulations is to create a realistic NoC

2since the protocol employs go-back-n scheme so we call it E2EEC-G)

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:7, 2008 

2349International Scholarly and Scientific Research & Innovation 2(7) 2008 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

7,
 2

00
8 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

06
95

.p
df



5

66

21

89

49

23 91

75

Array 1 Array 2

Fig. 1. Selection of sources and their corresponding destinations

E2EEC-G

0

5

10

15

20

25

2 4 8 16 32 64 128 256 512 1024

Increasing buffer size

A
v

e
ra

g
e

d
e

la
y

(x
1

0
c

y
c

le
s

)

0.1

0.5

1

1.5

2

2.5

3

Fig. 2. Packet latency with different buffer sizes and varying error rates

environment where senders and receivers are arbitrarily
distributed over the whole network.

We performed simulations to find out an optimal buffer
size. Our simulations show that for a 10 × 10 NoC, a buffer
size of 128 is most feasible with different error rates as
shown in figure 2. The simulations were performed in zero-
contention environment and the results are based on individual
sender-receiver pairs. Since we use shortest path routing, the
average latency is calculated to be 10 cycles where each cycle
represents a link delay. It should be noted that we do not
consider the router delay.

IV. COMPARATIVE ANALYSIS OF E2EEC-G PROTOCOL

WITH FLOODING PROTOCOL (FL)

We implemented a flooding variant of stochastic communi-
cation protocol based on flooding. The sender sends packets
in all directions (except to one from where it receives the
packet). Each node is equipped with CRC code to check the
validity of packet. If the packet is corrupt, it is dropped. If the
packet is valid, and it is destined for the current node, it is
accepted, otherwise, it is replicated to all its output ports. In
this case, the receiver may receive copies of the same packet
from different neighbor nodes, in which case it drops all the
packets which come later. Since a packet may reach earlier
than the broadcast is complete, a time to live (TTL) value is
associated with each packet. The TTL value of each packet
is incremented at each hop and after reaching the maximum
value, the packet is discarded. The flooding protocol works

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 10

No. of hops

T
o

ta
l
p

k
ts

g
e
n

e
ra

te
d

Fig. 3. Total packets generated after 10 hops

0

10000

20000

30000

40000

50000

60000

70000

80000

1 2 3 4 5 6 7 8 9 10

No. of senders

T
h

ro
u

g
h

p
u

t
(p

k
ts

)

E2EEC-G FL

Fig. 4. Comparison of FL and E2EEC-G average throughput

on the assumption that the packet will ultimately reach its
destination, therefore, no acknowledgements are required.

The major problem with the flooding protocol is that it
generates a huge amount of redundant packets in the whole
network. The situation gets worst when there are multiple
number of senders and receivers. Excessive packets not only
affect the overall performance but also affect the power
consumption of the system which is rather scarce on-chip. In
order to show the packet overhead, we took sample data from
the simulations for 1 sender and receiver, which is depicted
in figure 3. The graph clearly shows that after the first 10
hops, more than 1200 packets have already been generated in
the network. This trend would generally mean that the packet
overhead will drastically increase with increasing number of
senders.

Figure 4 shows the comparison of the average throughput of
FL and E2EEC-G. As we can see that the overall throughput
remains quite low in FL even when the number of senders in-
crease. On the other hand, the E2EEC-G throughput gradually
increases with increasing senders with relative stability.

Another important aspect is the packet drop rate. Figure
5 gives the comparison of packet drops in FL and E2EEC-
G protocols. In E2EEC-G, the drop rate is pretty low as
compared to FL which lies in the range of 50% to 90%.
Analyzing the graph shows that until 3 senders, there is hardly
any drop of packets in E2EEC-G protocol, however, when

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:7, 2008 

2350International Scholarly and Scientific Research & Innovation 2(7) 2008 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

7,
 2

00
8 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

06
95

.p
df



0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

No. of senders

A
v
g

.
d

ro
p

ra
te

%

FL E2EEC-G

Fig. 5. Comparison of FL and E2EEC-G drop rate

0

50000

100000

150000

200000

250000

300000

350000

400000

1 2 3 4 5 6 7 8 9 10

No. of senders

A
v
g

.
O

v
e
rh

e
a
d

(p
k
ts

)

E2EEC-G FL

Fig. 6. Comparison of FL and E2EEC-G packet overhead

sender increase, packet drops are inevitable, mainly due to
congestion in the routers. Routing strategy is static, and the
routers are bufferless, so when two packets are contesting for
the same output port, one has to be dropped. Nevertheless,
as it can be seen in the graph that even in the worst of the
situation, the E2EEC-G drop rate remains under 15% which
is much lower than FL.

The overhead (O) is defined as the goodput, that is, packets
with an increasing sequence number, divided by the number
of packets transferred in total. ACKs and NACKs, and re-
transmitted packets are counted as the overhead. For example,
let the error rate be 0, and the buffer size (bs) be 1, then,
the overhead of our protocol is 50% as for every data packet
an acknowledgement packet (an ACK) has to be transmitted.
Thus, for an error rate of 0, the overhead could be expressed
as:

Obs = 1

(bs+1)
and limbs→∞

Obs → 0.
Figure 6 shows a comparison of the packet overhead in

terms of increasing number of senders.
Again we can see that the packet overhead is drastically

increasing with increasing number of sender devices in FL
protocol. In E2EEC-G, on the contrary, it remains very low.
It is important to note that these results reflect an error free
NoC. Further, we introduce transient faults in the links in
order to observe the performance of the E2EEC-G protocol.
Although the on-chip error probability is much less than off-

chip networks, lying in the range of 10−9 and 10−20 BER, it
is feasible to introduce a much higher error rate in order to
observe some significant results. Based on this fact, we defined
an error model which introduces 1%, 5%, 10%, 15%, and
20% error rate gradually in the interconnects. The important
observation is the comparison of error induced E2EEC-G
protocol with the FL without any error as shown in figure
7.

It is clearly noticeable that even with increasing error rate,
the average throughput of E2EEC-G remains better than the
FL protocol. Even at the highest error rate of 20%, E2EEC-G
fairly performs better with large number of senders.

V. COMPARATIVE ANALYSIS OF E2EEC-G PROTOCOL

WITH LINK LEVEL (LL) RETRANSMISSION PROTOCOL

We implemented a packet based link level error control
protocol (LL) where each router sends a packet to the next
router and waits for the ACK. When it receives the ACK,
then it sends the next packet. Each router follows the same
pattern. In order to compare the performance of LL with
our E2EEC-G protocol, we performed simulations using the
same configuration as described in section ??. Figure ??
plots comparative throughput of LL and E2EEC-G against
increasing number of senders. The network is stable as there
are no errors in the links. Since each node in the LL protocol
processes the packet, the overall throughput is much lower than
the E2EEC-G which transfers packets uninterruptedly until
the buffer is emptied. Due to node delay, the router remains
blocked until the packet is released and ACK is generated. In
this case, each packet is delayed by 3 times as compared to
E2EEC-G protocol.

Figure 8 shows the packet overhead comparison of E2EEC-
G with LL. This is an interesting graph as we can see the
overhead of LL at some points even reaches above 700%
primarily because of ACKs generated at every router. As
compared to LL, the E2EEC-G is showing minimal overhead
as there is only one ACK after transfer of the entire buffer, that
is, 100 packets. Similarly, figure 9 shows average throughput
variation with increasing error rates. This shows that at ex-
treme error rates of 40% or higher, the throughput of both
protocols will become equal. The trend shows that above 60%
error rate, LL protocol may perform better especially in a
large interconnection network. However, we believe that such
error levels are unrealistic and until that happens, our E2EEC-
G protocol still prove to be a viable solution. Furthermore,
besides the fact that the LL protocol behaves rather in a
stable fashion, it is important to realize that, irrespective of
the number of senders, it bears a huge packet overhead. Since
every packet is ACKed at every intermediate stage router, so in
a large network, LL would generate a huge packet overhead.

VI. CONCLUSION AND FUTURE WORK

This paper gives a detailed account of comparative analysis
of various fault tolerant schemes to deal with transient faults
in Network on Chips. We first gave a brief outline of our
end-to-end based reliability protocol and discussed its main
features. Further, we compared our protocol with two of its

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:7, 2008 

2351International Scholarly and Scientific Research & Innovation 2(7) 2008 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

7,
 2

00
8 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

06
95

.p
df



1% error

0

10000

20000

30000

40000

50000

60000

70000

1 2 3 4 5 6 7 8 9 10

No. of senders

T
h

ro
u

g
h

p
u

t
(p

k
ts

)

E2EEC-G FL 5% error

0

10000

20000

30000

40000

50000

60000

70000

1 2 3 4 5 6 7 8 9 10

No. of senders

T
h

ro
u

g
h

p
u

t
(p

k
ts

)

E2EEC-G FL

10% error

0

10000

20000

30000

40000

50000

60000

70000

1 2 3 4 5 6 7 8 9 10

No. of senders

T
h

ro
u

g
h

p
u

t
(p

k
ts

)

E2EEC-G FL
15% error

0

10000

20000

30000

40000

50000

60000

70000

1 2 3 4 5 6 7 8 9 10

No. of senders

T
h

ro
u

g
h

p
u

t
(p

k
ts

)

E2EEC-G FL

20%error

0

10000

20000

30000

40000

50000

60000

70000

1 2 3 4 5 6 7 8 9 10

No. of Senders

T
h

ro
u

g
h

p
u

t
(p

k
ts

)

E2EEC-G FL

Fig. 7. Comparison of error-free FL protocol with (A) E2EEC-G with 1% error rate, (B) E2EEC-G with 5%, (C) E2EEC-G with 10%, (D) E2EEC-G with
15%, and (E) E2EEC-G with 20%

counterparts: flooding based protocol and link level error con-
trol protocol for NoCs. We performed extensive simulations
comparing the performance of all the protocols. Our simulation
results show that the overall performance of our E2EEC-G
protocol is much better than its two counterparts. Also our
protocol bears minimal overhead besides requiring limited
storage and processing capabilities.

In future, we plan to extend our protocol to support multi-
casting3 as it currently supports unicasting4.

3one source sends packets to many receivers
4one source sending packets to one receiver

REFERENCES

[1] Ming Shae Wu and Chung Len Lee, “Using a Periodic Square Wave
Test Signal to Detect Cross Talk Faults”, Journal, IEEE Design & Test
of Computers, Volume 22, Issue 2, March-April 2005, pp: 160-169.

[2] Dongkook Park, Chrysostomos Nicopoulos, Jongman Kim, N. Vi-
jaykrishnan, Chita R. Das, “Exploring Fault-Tolerant Network-on-Chip
Architectures”, Proceedings of the 2006 International Conference on
Dependable Systems and Networks (DSN06).

[3] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and L. Alvisi,
“Modeling the effect of technology trends on the soft error rate of
combinational logic”, In Proceedings of the Dependable Systems and
Networks (DSN), pp: 389-398, 2002.

[4] L. Benini, G. De Micheli, “Networks on Chips: A New SoC Paradigm”,
Magazine, IEEE Computer, Jan 2002 Vol.35, No.1, pp.70-78

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:7, 2008 

2352International Scholarly and Scientific Research & Innovation 2(7) 2008 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

7,
 2

00
8 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

06
95

.p
df



0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10

No. of senders

P
k
t

o
v
e
rh

e
a
d

%

LL E2EEC-G

Fig. 8. Avg. Packet overhead comparison of E2EEC-G and LL

0

100000

200000

300000

400000

500000

0 1 5 10 15 20

Error rate (%age)

A
v
g

.
th

ro
u

g
h

p
u

t

LL NoC

Fig. 9. Overall Avg. throughput comparison of NoC and LL protocols with
varying error rates

[5] William J. Dally, Brian Towles, “Route packets, not wires: on-chip
interconnection networks”, Proceeding, DAC 2001, pp.684-689

[6] Érika Cota, Luigi Carro, Flávio Wagner, Marcelo Lubaszewski, ”Power
Aware NoC reuse on the testing of core based systems”, International
Test Conference ITC 2003, September 30 - Oct 02, 2003, Charlotte NC
USA.

[7] B.W. Johnson, Fault Tolerance, “The Electrical Engineering Handbook”,
R.C. Dorf, ed., CRC Press, 1993.

[8] Muhammad Ali, Michael Welzl, Sven Hessler, Sybille Hellebrand:
“A Fault Tolerant Mechanism for handling Permanent and Transient
Failures in a Network on Chip”, In Proceedings of the 4th International
Conference on Information Technology : New Generations (IEEE ITNG
2007), Las Vegas, USA, 2-4 April 2007.

[9] Srinivasa R. Sridhara, and Naresh R. Shanbhag, “Coding for System-
on-Chip Networks: A Unified Framework”, IEEE Transactions on very
large scale integration (VLSI) Systems, VOL. 13, NO. 6, JUNE 2005.

[10] D. Bertozzi, L. Benini, Giovanni de Micheli, “Low Power Error Resilient
Encoding for On-Chip Data Buses”, Proceedings of the conference on
Design, automation and test in Europe (DATE 2002), 2002, pp: 102,
ISBN:1530-1591.

[11] P. Vellanki, N. Banerjee, and K.S. Chatha, “Quality-of- Service and Error
Control Techniques for Network-on-Chip Architectures”, Proceeding of
14th GLSVLSI, Boston, MA, ACM Press, 2004, pp: 45-50.

[12] H. Zimmer and A. Jantsch, “A Fault Model Notation and Error-Control
Scheme for Switch-to-Switch Buses in a Network-on-Chip”, Proceed-
ings of 1st International Conference on Hardware/Software Codesign
and System Synthesis (CODES 03), IEEE Press, 2003, pp: 188-193.

[13] David Bertozzi and Luca Benini, “Xpipes: A Network-on-chip Archi-
tecture for Gigascale System-on-chip”. Magazine, IEEE Circuits and
Systems, Second Quarter 2004, pp: 18-31.

[14] Srinivasan Murali, Theocharis Theocharides, N. Vijaykrishnan, Mary
Jane Irwin, Luca Benini, Giovanni De Micheli, “Analysis of Error

Recovery Schemes for Networks on Chips”, IEEE Design and Test,
September/October 2005 Vol. 22, No. 5, pp: 434-442.ISSN: 0740-7475.

[15] Dumitras, T.; Marculescu, R. “On-chip stochastic communication”,
Proceeding, Design, Automation and Test in Europe Conference and
Exhibition, 2003 Volume , Issue , 2003, pp: 790 - 795.

[16] Karp R. et. al. “Randomized rumor spreading”, In Proceedings of the
IEEE Symposium on Foundations of Computer Science, 2000.

[17] M. Millberg, E. Nilsson, R. Thid, S. Kumar, A. Jantsch, “The Nostrum
backbonea communication protocol stack for networks on chip”, In VLSI
Design Conference, Mumbai, India, January 2004.

[18] http://www.isi.edu/nsnam/ns/
[19] Vu-Duc Ngo, Hae-Wook Choi, “On Chip Network: Topology design

and evaluation using NS2”, In Proceedings of the 7th International
Conference on Advanced Communication Technology (ICACT 2005),
Phoenix Park, Korea, Feb. 21-23, 2005.

[20] Y.-R. Sun, S. Kumar, and A. Jantsch, “Simulation and evaluation of a
network on chip architecture using ns-2”, In Proceedings of the IEEE
NorChip Conference, November 2002.

[21] Alireza Vahdatpour, Ahmadreza Tavakoli, Mohammad Hossein Falaki,
“Hierarchical Graph: A New Cost Effective Architecture for Network
on Chip”, In Proceedings of the International Conference on Embedded
And Ubiquitous Computing, Nagasaki, Japan, December 2005.

[22] Franco Fummi, Giovanni Perbellini, Paolo Gallo, Massimo Poncino,
Stefano Martini and Fabio Ricciato, “A Timing-Accurate Modeling
and Simulation Environment for Networked Embedded Systems”, In
Proceedings of the 40th Design Automation Conference (DAC), USA,
June 2-6, 2003.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:7, 2008 

2353International Scholarly and Scientific Research & Innovation 2(7) 2008 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

7,
 2

00
8 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

06
95

.p
df




