Search results for: Brain Extraction.
990 Riemannian Manifolds for Brain Extraction on Multi-modal Resonance Magnetic Images
Authors: Mohamed Gouskir, Belaid Bouikhalene, Hicham Aissaoui, Benachir Elhadadi
Abstract:
In this paper, we present an application of Riemannian geometry for processing non-Euclidean image data. We consider the image as residing in a Riemannian manifold, for developing a new method to brain edge detection and brain extraction. Automating this process is a challenge due to the high diversity in appearance brain tissue, among different patients and sequences. The main contribution, in this paper, is the use of an edge-based anisotropic diffusion tensor for the segmentation task by integrating both image edge geometry and Riemannian manifold (geodesic, metric tensor) to regularize the convergence contour and extract complex anatomical structures. We check the accuracy of the segmentation results on simulated brain MRI scans of single T1-weighted, T2-weighted and Proton Density sequences. We validate our approach using two different databases: BrainWeb database, and MRI Multiple sclerosis Database (MRI MS DB). We have compared, qualitatively and quantitatively, our approach with the well-known brain extraction algorithms. We show that using a Riemannian manifolds to medical image analysis improves the efficient results to brain extraction, in real time, outperforming the results of the standard techniques.Keywords: Riemannian manifolds, Riemannian Tensor, Brain Segmentation, Non-Euclidean data, Brain Extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1662989 Can EEG Test Helps in Identifying Brain Tumor?
Authors: M. Sharanreddy, P. K. Kulkarni
Abstract:
Brain tumor is inherently serious and life-threatening disease. Brain tumor builds the intracranial pressure in the brain, by shifting the brain or pushing against the skull, and also damaging nerves and healthy brain tissues. This intracranial pressure affects and interferes with normal brain functionality, which results in generation of abnormal electrical activities from brain. With recent development in the medical engineering and instruments, EEG instruments are able to record the brain electric activities with high accuracy, which establishes EEG as a primary tool for diagnosing the brain abnormalities. Research scholars and general physicians, often face difficulty in understanding EEG patterns. This paper presents the EEG patterns associated with brain tumor by combing medicine theory and neurologist experience. Paper also explains the pros-cons of the EEG based brain tumor identification.
Keywords: Brain tumor, Electroencephalogram (EEG).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10293988 Motor Imaginary Signal Classification Using Adaptive Recursive Bandpass Filter and Adaptive Autoregressive Models for Brain Machine Interface Designs
Authors: Vickneswaran Jeyabalan, Andrews Samraj, Loo Chu Kiong
Abstract:
The noteworthy point in the advancement of Brain Machine Interface (BMI) research is the ability to accurately extract features of the brain signals and to classify them into targeted control action with the easiest procedures since the expected beneficiaries are of disabled. In this paper, a new feature extraction method using the combination of adaptive band pass filters and adaptive autoregressive (AAR) modelling is proposed and applied to the classification of right and left motor imagery signals extracted from the brain. The introduction of the adaptive bandpass filter improves the characterization process of the autocorrelation functions of the AAR models, as it enhances and strengthens the EEG signal, which is noisy and stochastic in nature. The experimental results on the Graz BCI data set have shown that by implementing the proposed feature extraction method, a LDA and SVM classifier outperforms other AAR approaches of the BCI 2003 competition in terms of the mutual information, the competition criterion, or misclassification rate.
Keywords: Adaptive autoregressive, adaptive bandpass filter, brain machine Interface, EEG, motor imaginary.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2900987 Region Based Hidden Markov Random Field Model for Brain MR Image Segmentation
Authors: Terrence Chen, Thomas S. Huang
Abstract:
In this paper, we present the region based hidden Markov random field model (RBHMRF), which encodes the characteristics of different brain regions into a probabilistic framework for brain MR image segmentation. The recently proposed TV+L1 model is used for region extraction. By utilizing different spatial characteristics in different brain regions, the RMHMRF model performs beyond the current state-of-the-art method, the hidden Markov random field model (HMRF), which uses identical spatial information throughout the whole brain. Experiments on both real and synthetic 3D MR images show that the segmentation result of the proposed method has higher accuracy compared to existing algorithms.Keywords: Finite Gaussian mixture model, Hidden Markov random field model, image segmentation, MRI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2101986 Brain MRI Segmentation and Lesions Detection by EM Algorithm
Authors: Mounira Rouaïnia, Mohamed Salah Medjram, Noureddine Doghmane
Abstract:
In Multiple Sclerosis, pathological changes in the brain results in deviations in signal intensity on Magnetic Resonance Images (MRI). Quantitative analysis of these changes and their correlation with clinical finding provides important information for diagnosis. This constitutes the objective of our work. A new approach is developed. After the enhancement of images contrast and the brain extraction by mathematical morphology algorithm, we proceed to the brain segmentation. Our approach is based on building statistical model from data itself, for normal brain MRI and including clustering tissue type. Then we detect signal abnormalities (MS lesions) as a rejection class containing voxels that are not explained by the built model. We validate the method on MR images of Multiple Sclerosis patients by comparing its results with those of human expert segmentation.Keywords: EM algorithm, Magnetic Resonance Imaging, Mathematical morphology, Markov random model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2165985 Computer Aided Diagnostic System for Detection and Classification of a Brain Tumor through MRI Using Level Set Based Segmentation Technique and ANN Classifier
Authors: Atanu K Samanta, Asim Ali Khan
Abstract:
Due to the acquisition of huge amounts of brain tumor magnetic resonance images (MRI) in clinics, it is very difficult for radiologists to manually interpret and segment these images within a reasonable span of time. Computer-aided diagnosis (CAD) systems can enhance the diagnostic capabilities of radiologists and reduce the time required for accurate diagnosis. An intelligent computer-aided technique for automatic detection of a brain tumor through MRI is presented in this paper. The technique uses the following computational methods; the Level Set for segmentation of a brain tumor from other brain parts, extraction of features from this segmented tumor portion using gray level co-occurrence Matrix (GLCM), and the Artificial Neural Network (ANN) to classify brain tumor images according to their respective types. The entire work is carried out on 50 images having five types of brain tumor. The overall classification accuracy using this method is found to be 98% which is significantly good.
Keywords: Artificial neural network, ANN, brain tumor, computer-aided diagnostic, CAD system, gray-level co-occurrence matrix, GLCM, level set method, tumor segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1364984 Mechanisms of Ginger Bioactive Compounds Extract Using Soxhlet and Accelerated Water Extraction
Authors: M. N. Azian, A. N. Ilia Anisa, Y. Iwai
Abstract:
The mechanism for extraction bioactive compounds from plant matrix is essential for optimizing the extraction process. As a benchmark technique, a soxhlet extraction has been utilized for discussing the mechanism and compared with an accelerated water extraction. The trends of both techniques show that the process involves extraction and degradation. The highest yields of 6-, 8-, 10-gingerols and 6-shogaol in soxhlet extraction were 13.948, 7.12, 10.312 and 2.306 mg/g, respectively. The optimum 6-, 8-, 10-gingerols and 6-shogaol extracted by the accelerated water extraction at 140oC were 68.97±3.95 mg/g at 3min, 18.98±3.04 mg/g at 5min, 5.167±2.35 mg/g at 3min and 14.57±6.27 mg/g at 3min, respectively. The effect of temperature at 3mins shows that the concentration of 6-shogaol increased rapidly as decreasing the recovery of 6-gingerol.
Keywords: Mechanism, bioactive compounds, soxhlet extraction, accelerated water extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5370983 Impact of Music on Brain Function during Mental Task using Electroencephalography
Authors: B. Geethanjali, K. Adalarasu, R. Rajsekaran
Abstract:
Music has a great effect on human body and mind; it can have a positive effect on hormone system. Objective of this study is to analysis the effect of music (carnatic, hard rock and jazz) on brain activity during mental work load using electroencephalography (EEG). Eight healthy subjects without special musical education participated in the study. EEG signals were acquired at frontal (Fz), parietal (Pz) and central (Cz) lobes of brain while listening to music at three experimental condition (rest, music without mental task and music with mental task). Spectral powers features were extracted at alpha, theta and beta brain rhythms. While listening to jazz music, the alpha and theta powers were significantly (p < 0.05) high for rest as compared to music with and without mental task in Cz. While listening to Carnatic music, the beta power was significantly (p < 0.05) high for with mental task as compared to rest and music without mental task at Cz and Fz location. This finding corroborates that attention based activities are enhanced while listening to jazz and carnatic as compare to Hard rock during mental task.Keywords: Music, Brain Function, Electroencephalography (EEG), Mental Task, Features extraction parameters
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4504982 Clustering-Based Detection of Alzheimer's Disease Using Brain MR Images
Authors: Sofia Matoug, Amr Abdel-Dayem
Abstract:
This paper presents a comprehensive survey of recent research studies to segment and classify brain MR (magnetic resonance) images in order to detect significant changes to brain ventricles. The paper also presents a general framework for detecting regions that atrophy, which can help neurologists in detecting and staging Alzheimer. Furthermore, a prototype was implemented to segment brain MR images in order to extract the region of interest (ROI) and then, a classifier was employed to differentiate between normal and abnormal brain tissues. Experimental results show that the proposed scheme can provide a reliable second opinion that neurologists can benefit from.
Keywords: Alzheimer, brain images, classification techniques, Magnetic Resonance Images, MRI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1837981 Brainwave Classification for Brain Balancing Index (BBI) via 3D EEG Model Using k-NN Technique
Authors: N. Fuad, M. N. Taib, R. Jailani, M. E. Marwan
Abstract:
In this paper, the comparison between k-Nearest Neighbor (kNN) algorithms for classifying the 3D EEG model in brain balancing is presented. The EEG signal recording was conducted on 51 healthy subjects. Development of 3D EEG models involves pre-processing of raw EEG signals and construction of spectrogram images. Then, maximum PSD values were extracted as features from the model. There are three indexes for balanced brain; index 3, index 4 and index 5. There are significant different of the EEG signals due to the brain balancing index (BBI). Alpha-α (8–13 Hz) and beta-β (13–30 Hz) were used as input signals for the classification model. The k-NN classification result is 88.46% accuracy. These results proved that k-NN can be used in order to predict the brain balancing application.
Keywords: Brain balancing, kNN, power spectral density, 3D EEG model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2627980 Extraction Condition of Echinocactus grusonii
Authors: R. Oonsivilai, N. Chaijareonudomroung, Y. Huantanom, A. Oonsivilai
Abstract:
The optimal extraction condition of dried Echinocactus grusonii powder was studied. The three independent variables are raw material drying temperature, extraction temperature, and extraction time. The dependent variables are both yield percentage of crude extract and total phenolic quantification as gallic acid equivalent in crude extract. The experimental design was based on central composite design. Highest yield percentage of crude extract could get from extraction condition at raw material drying temperature at 60°C, extraction temperature at 15°C, and extraction time for 25 min °C. Moreover, the crude extract with highest phenolic occurred by extraction condition of raw material drying temperature at 60°C, extraction temperature at 35 °C, and extraction lasting 25 min.Keywords: Drying temperature, Extraction temperature, Optimal condition, Total phenolic
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2185979 Noninvasive Brain-Machine Interface to Control Both Mecha TE Robotic Hands Using Emotiv EEG Neuroheadset
Authors: Adrienne Kline, Jaydip Desai
Abstract:
Electroencephalogram (EEG) is a noninvasive technique that registers signals originating from the firing of neurons in the brain. The Emotiv EEG Neuroheadset is a consumer product comprised of 14 EEG channels and was used to record the reactions of the neurons within the brain to two forms of stimuli in 10 participants. These stimuli consisted of auditory and visual formats that provided directions of ‘right’ or ‘left.’ Participants were instructed to raise their right or left arm in accordance with the instruction given. A scenario in OpenViBE was generated to both stimulate the participants while recording their data. In OpenViBE, the Graz Motor BCI Stimulator algorithm was configured to govern the duration and number of visual stimuli. Utilizing EEGLAB under the cross platform MATLAB®, the electrodes most stimulated during the study were defined. Data outputs from EEGLAB were analyzed using IBM SPSS Statistics® Version 20. This aided in determining the electrodes to use in the development of a brain-machine interface (BMI) using real-time EEG signals from the Emotiv EEG Neuroheadset. Signal processing and feature extraction were accomplished via the Simulink® signal processing toolbox. An Arduino™ Duemilanove microcontroller was used to link the Emotiv EEG Neuroheadset and the right and left Mecha TE™ Hands.
Keywords: Brain-machine interface, EEGLAB, emotiv EEG neuroheadset, openViBE, simulink.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2804978 CFD Simulation of Dense Gas Extraction through Polymeric Membranes
Authors: Azam Marjani, Saeed Shirazian
Abstract:
In this study is presented a general methodology to predict the performance of a continuous near-critical fluid extraction process to remove compounds from aqueous solutions using hollow fiber membrane contactors. A comprehensive 2D mathematical model was developed to study Porocritical extraction process. The system studied in this work is a membrane based extractor of ethanol and acetone from aqueous solutions using near-critical CO2. Predictions of extraction percentages obtained by simulations have been compared to the experimental values reported by Bothun et al. [5]. Simulations of extraction percentage of ethanol and acetone show an average difference of 9.3% and 6.5% with the experimental data, respectively. More accurate predictions of the extraction of acetone could be explained by a better estimation of the transport properties in the aqueous phase that controls the extraction of this solute.Keywords: Solvent extraction, Membrane, Mass transfer, Densegas, Modeling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1591977 Functional Near Infrared Spectroscope for Cognition Brain Tasks by Wavelets Analysis and Neural Networks
Authors: Truong Quang Dang Khoa, Masahiro Nakagawa
Abstract:
Brain Computer Interface (BCI) has been recently increased in research. Functional Near Infrared Spectroscope (fNIRs) is one the latest technologies which utilize light in the near-infrared range to determine brain activities. Because near infrared technology allows design of safe, portable, wearable, non-invasive and wireless qualities monitoring systems, fNIRs monitoring of brain hemodynamics can be value in helping to understand brain tasks. In this paper, we present results of fNIRs signal analysis indicating that there exist distinct patterns of hemodynamic responses which recognize brain tasks toward developing a BCI. We applied two different mathematics tools separately, Wavelets analysis for preprocessing as signal filters and feature extractions and Neural networks for cognition brain tasks as a classification module. We also discuss and compare with other methods while our proposals perform better with an average accuracy of 99.9% for classification.Keywords: functional near infrared spectroscope (fNIRs), braincomputer interface (BCI), wavelets, neural networks, brain activity, neuroimaging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2036976 Thermodynamic Study of Seed Oil Extraction by Organic Solvents
Authors: Zhila Safari, Ali Ashrafizadeh, Najaf Hedayat
Abstract:
Thermodynamics characterization Sesame oil extraction by Acetone, Hexane and Benzene has been evaluated. The 120 hours experimental Data were described by a simple mathematical model. According to the simulation results and the essential criteria, Acetone is superior to other solvents but under certain conditions where oil extraction takes place Hexane is superior catalyst.Keywords: Liquid-solid extraction, seed oil, ThermodynamicStudy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2071975 Effect of Enzyme and Heat Pretreatment on Sunflower Oil Recovery Using Aqueous and Hexane Extractions
Authors: E. Danso-Boateng
Abstract:
The effects of enzyme action and heat pretreatment on oil extraction yield from sunflower kernels were analysed using hexane extraction with Soxhlet, and aqueous extraction with incubator shaker. Ground kernels of raw and heat treated kernels, each with and without Viscozyme treatment were used. Microscopic images of the kernels were taken to analyse the visible effects of each treatment on the cotyledon cell structure of the kernels. Heat pretreated kernels before both extraction processes produced enhanced oil extraction yields than the control, with steam explosion the most efficient. In hexane extraction, applying a combination of steam explosion and Viscozyme treatments to the kernels before the extraction gave the maximum oil extractable in 1 hour; while for aqueous extraction, raw kernels treated with Viscozyme gave the highest oil extraction yield. Remarkable cotyledon cell disruption was evident in kernels treated with Viscozyme; whereas steam explosion and conventional heat treated kernels had similar effects.
Keywords: Enzyme-assisted aqueous and hexane extraction, heatpretreatment, sunflower cotyledon structure, sunflower oil extraction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3473974 Subcritical Water Extraction of Mannitol from Olive Leaves
Authors: S. M. Ghoreishi, R. Gholami Shahrestani, S. H. Ghaziaskar
Abstract:
Subcritical water extraction was investigated as a novel and alternative technology in the food and pharmaceutical industry for the separation of Mannitol from olive leaves and its results was compared with those of Soxhlet extraction. The effects of temperature, pressure, and flow rate of water and also momentum and mass transfer dimensionless variables such as Reynolds and Peclet Numbers on extraction yield and equilibrium partition coefficient were investigated. The 30-110 bars, 60-150°C, and flow rates of 0.2-2 mL/min were the water operating conditions. The results revealed that the highest Mannitol yield was obtained at 100°C and 50 bars. However, extraction of Mannitol was not influenced by the variations of flow rate. The mathematical modeling of experimental measurements was also investigated and the model is capable of predicting the experimental measurements very well. In addition, the results indicated higher extraction yield for the subcritical water extraction in contrast to Soxhlet method.Keywords: Extraction, Mannitol, Modeling, Olive leaves, Soxhlet extraction, Subcritical water.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3065973 Descriptive Study of Role Played by Exercise and Diet on Brain Plasticity
Authors: Mridul Sharma, Praveen Saroha
Abstract:
In today's world, everyone has become so busy in their to-do tasks and daily routine that they tend to ignore some of the basal components of our life, including exercise and diet. This comparative study analyzes the pathways of the relationship between exercise and brain plasticity and also includes another variable diet to study the effects of diet on learning by answering questions including which diet is known to be the best learning supporter and what are the recommended quantities of the same. Further, this study looks into inter-relation between diet and exercise, and also some other approach of the relation between diet and exercise on learning apart from through Brain Derived Neurotrophic Factor (BDNF).
Keywords: Basolateral amygdala, brain derived neurotrophic factor, brain plasticity, diet, exercise, mediterranean diet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1122972 Vincristine-Dextran Complex Loaded Solid Lipid Nanoparticles for Drug Delivery to the Brain
Authors: E. Aboutaleb, R. Dinarvand
Abstract:
The purpose of this work was to inspect the potential of vincristine-dextran complex loaded solid lipid nanoparticles for drug delivery to the brain. The nanoparticles were stained with a fluorescence dye and their plasma pharmacokinetic and brain concentrations were investigated following injection to rats. The result revealed a significant improvement in the plasma concentration profile of the SLN injected animals as well as a sharp increased concentration in the brains.Keywords: Brain, Coumarin-6, Nanoparticles, SLN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2361971 The Effect of the Hemispheres of the Brain and the Tone of Voice on Persuasion
Authors: Rica Jell de Laza, Jose Alberto Fernandez, Andrea Marie Mendoza, Qristin Jeuel Regalado
Abstract:
This study investigates whether participants experience different levels of persuasion depending on the hemisphere of the brain and the tone of voice. The experiment was performed on 96 volunteer undergraduate students taking an introductory course in psychology. The participants took part in a 2 x 3 (Hemisphere: left, right x Tone of Voice: positive, neutral, negative) Mixed Factorial Design to measure how much a person was persuaded. Results showed that the hemisphere of the brain and the tone of voice used did not significantly affect the results individually. Furthermore, there was no interaction effect. Therefore, the hemispheres of the brain and the tone of voice employed play insignificant roles in persuading a person.
Keywords: Dichotic listening, brain hemisphere, tone of voice, persuasion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1412970 Effect of Wheat Flour Extraction Rates on Flour Composition, Farinographic Characteristics and Sensory Perception of Sourdough Naans
Authors: Ghulam Mueen-ud-Din, Salim-ur-Rehman, Faqir M. Anjum, Haq Nawaz, Mian A. Murtaza
Abstract:
The effect of wheat flour extraction rates on flour composition, farinographic characteristics and the quality of sourdough naans was investigated. The results indicated that by increasing the extraction rate, the amount of protein, fiber, fat and ash increased, whereas moisture content decreased. Farinographic characteristic like water absorption and dough development time increased with an increase in flour extraction rate but the dough stabilities and tolerance indices were reduced with an increase in flour extraction rates. Titratable acidity for both sourdough and sourdough naans also increased along with flour extraction rate. The study showed that overall quality of sourdough naans were affected by both flour extraction rate and starter culture used. Sensory analysis of sourdough naans revealed that desirable extraction rate for sourdough naan was 76%.Keywords: Extraction rates, Farinographic characteristics, Flour composition, Sourdough naans, Wheat flour.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4671969 Effects of Hidden Unit Sizes and Autoregressive Features in Mental Task Classification
Authors: Ramaswamy Palaniappan, Nai-Jen Huan
Abstract:
Classification of electroencephalogram (EEG) signals extracted during mental tasks is a technique that is actively pursued for Brain Computer Interfaces (BCI) designs. In this paper, we compared the classification performances of univariateautoregressive (AR) and multivariate autoregressive (MAR) models for representing EEG signals that were extracted during different mental tasks. Multilayer Perceptron (MLP) neural network (NN) trained by the backpropagation (BP) algorithm was used to classify these features into the different categories representing the mental tasks. Classification performances were also compared across different mental task combinations and 2 sets of hidden units (HU): 2 to 10 HU in steps of 2 and 20 to 100 HU in steps of 20. Five different mental tasks from 4 subjects were used in the experimental study and combinations of 2 different mental tasks were studied for each subject. Three different feature extraction methods with 6th order were used to extract features from these EEG signals: AR coefficients computed with Burg-s algorithm (ARBG), AR coefficients computed with stepwise least square algorithm (ARLS) and MAR coefficients computed with stepwise least square algorithm. The best results were obtained with 20 to 100 HU using ARBG. It is concluded that i) it is important to choose the suitable mental tasks for different individuals for a successful BCI design, ii) higher HU are more suitable and iii) ARBG is the most suitable feature extraction method.Keywords: Autoregressive, Brain-Computer Interface, Electroencephalogram, Neural Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1802968 Extraction Condition of Phaseolus vulgaris
Authors: Ratchadaporn Oonsivilai, Jutarat Manatwiyangkool, Anant Oonsivilai
Abstract:
Theoptimal extraction condition of dried Phaseolus vulgaris powderwas studied. The three independent variables are raw material concentration, shaking and centrifugaltime. The dependent variables are both yield percentage of crude extract and alphaamylase enzyme inhibition activity. The experimental design was based on box-behnkendesign. Highest yield percentage of crude extract could get from extraction condition at concentration of 1, 0,1, concentration of 0.15 M ,extraction time for 2hour, and separationtime for60 min. Moreover, the crude extract with highest alpha-amylase enzyme inhibition activityoccurred by extraction condition at concentration of 0.10 M, extraction time for 2 min, and separation time for 45 minKeywords: Extraction time, Optimal condition, Alpha-amylase enzymeinhibition activity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2545967 A New Method for Rapid DNA Extraction from Artemia (Branchiopoda, Crustacea)
Authors: R. Manaffar, R. Maleki, S. Zare, N. Agh, S. Soltanian, B. Sehatnia, P. Sorgeloos, P. Bossier, G. Van Stappen
Abstract:
Artemia is one of the most conspicuous invertebrates associated with aquaculture. It can be considered as a model organism, offering numerous advantages for comprehensive and multidisciplinary studies using morphologic or molecular methods. Since DNA extraction is an important step of any molecular experiment, a new and a rapid method of DNA extraction from adult Artemia was described in this study. Besides, the efficiency of this technique was compared with two widely used alternative techniques, namely Chelex® 100 resin and SDS-chloroform methods. Data analysis revealed that the new method is the easiest and the most cost effective method among the other methods which allows a quick and efficient extraction of DNA from the adult animal.Keywords: APD, Artemia, DNA extraction, Molecularexperiments
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3191966 Active Segment Selection Method in EEG Classification Using Fractal Features
Authors: Samira Vafaye Eslahi
Abstract:
BCI (Brain Computer Interface) is a communication machine that translates brain massages to computer commands. These machines with the help of computer programs can recognize the tasks that are imagined. Feature extraction is an important stage of the process in EEG classification that can effect in accuracy and the computation time of processing the signals. In this study we process the signal in three steps of active segment selection, fractal feature extraction, and classification. One of the great challenges in BCI applications is to improve classification accuracy and computation time together. In this paper, we have used student’s 2D sample t-statistics on continuous wavelet transforms for active segment selection to reduce the computation time. In the next level, the features are extracted from some famous fractal dimension estimation of the signal. These fractal features are Katz and Higuchi. In the classification stage we used ANFIS (Adaptive Neuro-Fuzzy Inference System) classifier, FKNN (Fuzzy K-Nearest Neighbors), LDA (Linear Discriminate Analysis), and SVM (Support Vector Machines). We resulted that active segment selection method would reduce the computation time and Fractal dimension features with ANFIS analysis on selected active segments is the best among investigated methods in EEG classification.
Keywords: EEG, Student’s t- statistics, BCI, Fractal Features, ANFIS, FKNN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2120965 Optimization for Subcritical Water Extraction of Phenolic Compounds from Rambutan Peels
Authors: Nuttawan Yoswathana, M. N. Eshtiaghi
Abstract:
Rambutan is a tropical fruit which peel possesses antioxidant properties. This work was conducted to optimize extraction conditions of phenolic compounds from rambutan peel. Response surface methodology (RSM) was adopted to optimize subcritical water extraction (SWE) on temperature, extraction time and percent solvent mixture. The results demonstrated that the optimum conditions for SWE were as follows: temperature 160°C, extraction time 20min. and concentration of 50% ethanol. Comparison of the phenolic compounds from the rambutan peels in maceration 6h, soxhlet 4h, and SWE 20min., it indicated that total phenolic content (using Folin-Ciocalteu-s phenol reagent) was 26.42, 70.29, and 172.47mg of tannic acid equivalent (TAE) per g dry rambutan peel, respectively. The comparative study concluded that SWE was a promising technique for phenolic compounds extraction from rambutan peel, due to much more two times of conventional techniques and shorter extraction times.
Keywords: Subcritical water extraction, Rambutan peel, phenolic compounds, response surface methodology
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3652964 Optimization of Deglet-Nour Date (Phoenix dactylifera L.) Phenol Extraction Conditions
Authors: Lekbir Adel, Alloui-Lombarkia Ourida, Mekentichi Sihem, Noui Yassine, Baississe Salima
Abstract:
The objective of this study was to optimize the extraction conditions for phenolic compounds, total flavonoids, and antioxidant activity from Deglet-Nour variety. The extraction of active components from natural sources depends on different factors. The knowledge of the effects of different extraction parameters is useful for the optimization of the process, as well for the ability to predict the extraction yield. The effects of extraction variables, namely types of solvent (methanol, ethanol and acetone) and extraction time (1h, 6h, 12h and 24h) on phenolics extraction yield were evaluated. It has been shown that the time of extraction and types of solvent have a statistically significant influence on the extraction of phenolic compounds from Deglet-Nour variety. The optimised conditions yielded values of 80.19 ± 6.37 mg GAE/100 g FW for TPC, 2.34 ± 0.27 mg QE/100 g FW for TFC and 90.20 ± 1.29% for antioxidant activity were methanol solvent and 6 hours of time. According to the results obtained in this study, Deglet-Nour variety can be considered as a natural source of phenolic compounds with good antioxidant capacity.
Keywords: Deglet-Nour variety, Date palm Fruit, Phenolic compounds, Total flavonoids, Antioxidant activity, Extraction, Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2677963 CBIR Using Multi-Resolution Transform for Brain Tumour Detection and Stages Identification
Authors: H. Benjamin Fredrick David, R. Balasubramanian, A. Anbarasa Pandian
Abstract:
Image retrieval is the most interesting technique which is being used today in our digital world. CBIR, commonly expanded as Content Based Image Retrieval is an image processing technique which identifies the relevant images and retrieves them based on the patterns that are extracted from the digital images. In this paper, two research works have been presented using CBIR. The first work provides an automated and interactive approach to the analysis of CBIR techniques. CBIR works on the principle of supervised machine learning which involves feature selection followed by training and testing phase applied on a classifier in order to perform prediction. By using feature extraction, the image transforms such as Contourlet, Ridgelet and Shearlet could be utilized to retrieve the texture features from the images. The features extracted are used to train and build a classifier using the classification algorithms such as Naïve Bayes, K-Nearest Neighbour and Multi-class Support Vector Machine. Further the testing phase involves prediction which predicts the new input image using the trained classifier and label them from one of the four classes namely 1- Normal brain, 2- Benign tumour, 3- Malignant tumour and 4- Severe tumour. The second research work includes developing a tool which is used for tumour stage identification using the best feature extraction and classifier identified from the first work. Finally, the tool will be used to predict tumour stage and provide suggestions based on the stage of tumour identified by the system. This paper presents these two approaches which is a contribution to the medical field for giving better retrieval performance and for tumour stages identification.
Keywords: Brain tumour detection, content based image retrieval, classification of tumours, image retrieval.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 773962 Meditation Based Brain Painting Promoting Foreign Language Memory through Establishing a Brain-Computer Interface
Authors: Zhepeng Rui, Zhenyu Gu, Caitilin de Bérigny
Abstract:
In the current study, we designed an interactive meditation and brain painting application to cultivate users’ creativity, promote meditation, reduce stress, and improve cognition while attempting to learn a foreign language. User tests and data analyses were conducted on 42 male and 42 female participants to better understand sex-associated psychological and aesthetic differences. Our method utilized brain-computer interfaces to import meditation and attention data to create artwork in meditation-based applications. Female participants showed statistically significantly different language learning outcomes following three meditation paradigms. The art style of brain painting helped females with language memory. Our results suggest that the most ideal methods for promoting memory attention were meditation methods and brain painting exercises contributing to language learning, memory concentration promotion, and foreign word memorization. We conclude that a short period of meditation practice can help in learning a foreign language. These findings provide insights into meditation, creative language education, brain-computer interface, and human-computer interactions.
Keywords: Brain-computer interface, creative thinking, meditation, mental health.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 585961 Extraction of Significant Phrases from Text
Authors: Yuan J. Lui
Abstract:
Prospective readers can quickly determine whether a document is relevant to their information need if the significant phrases (or keyphrases) in this document are provided. Although keyphrases are useful, not many documents have keyphrases assigned to them, and manually assigning keyphrases to existing documents is costly. Therefore, there is a need for automatic keyphrase extraction. This paper introduces a new domain independent keyphrase extraction algorithm. The algorithm approaches the problem of keyphrase extraction as a classification task, and uses a combination of statistical and computational linguistics techniques, a new set of attributes, and a new machine learning method to distinguish keyphrases from non-keyphrases. The experiments indicate that this algorithm performs better than other keyphrase extraction tools and that it significantly outperforms Microsoft Word 2000-s AutoSummarize feature. The domain independence of this algorithm has also been confirmed in our experiments.
Keywords: classification, keyphrase extraction, machine learning, summarization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2050