Motor Imaginary Signal Classification Using Adaptive Recursive Bandpass Filter and Adaptive Autoregressive Models for Brain Machine Interface Designs
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Motor Imaginary Signal Classification Using Adaptive Recursive Bandpass Filter and Adaptive Autoregressive Models for Brain Machine Interface Designs

Authors: Vickneswaran Jeyabalan, Andrews Samraj, Loo Chu Kiong

Abstract:

The noteworthy point in the advancement of Brain Machine Interface (BMI) research is the ability to accurately extract features of the brain signals and to classify them into targeted control action with the easiest procedures since the expected beneficiaries are of disabled. In this paper, a new feature extraction method using the combination of adaptive band pass filters and adaptive autoregressive (AAR) modelling is proposed and applied to the classification of right and left motor imagery signals extracted from the brain. The introduction of the adaptive bandpass filter improves the characterization process of the autocorrelation functions of the AAR models, as it enhances and strengthens the EEG signal, which is noisy and stochastic in nature. The experimental results on the Graz BCI data set have shown that by implementing the proposed feature extraction method, a LDA and SVM classifier outperforms other AAR approaches of the BCI 2003 competition in terms of the mutual information, the competition criterion, or misclassification rate.

Keywords: Adaptive autoregressive, adaptive bandpass filter, brain machine Interface, EEG, motor imaginary.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1080478

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2911

References:


[1] L. Kauhanen, T. Nykopp, J. Lehtonen, P. Jyla¨nki, J. Heikkonen, P. Rantanen, H. Alaranta, M. Sams, "EEG and MEG brain computer interface for tetraplegic patients", IEEE Trans. Neural Syst. Rehabil. Eng. 14 (2) (2006) 190-193.
[2] J. Kronegg, G. Chanel, S. Voloshynovskiy, T. Pun, "EEG-based synchronized brain-computer interfaces: a model for optimizing the number of mental tasks", IEEE Trans. Neural Syst. Rehabil. Eng. 15 (1) (2007) 50-58.
[3] J.R. Wolpaw, N. Birbaumer, D.J. McFarland, G. Pfurtscheller, T.M. Vaughan, "Brain-computer interfaces for communication and control", Clin. Neurophysiol. 113 (2002) 767-791.
[4] G. Pfurtscheller, "EEG event-related desynchronization (ERD) and event-related synchronization (ERS), Electroencephalogr.: Basic Prin", Clin. Appl. (1999) 958-967.
[5] J. Vickneswaran, S. Andrew, CK. Loo, " Classification of Motor Imaginary Tasks Using Adaptive Recursive Bandpass Filter", Proc. International Conference on Signal Processing and Multimedia Applications(SIGMAP2008),(2008) 113-118.
[6] SM Zhou, John Q. Gan b, F. Sepulveda, "Classifying mental tasks based on features of higher-order statistics from EEG signals in brain computer interface", Inform. Sci. 178 (2008) 1629-1640
[7] A. L. Blum and P. Langley, "Selection of relevant features and examples in machine learning," Artif. Intell., vol. 97, pp. 245-271, Dec. 1997.
[8] B. H. Jansen, J. R. Bourne, J. W. Ward, "Autoregressive estimation of short segment spectra for computerized EEG analysis," IEEE Trans.Biomed. Eng., 28(9), 1981.
[9] G. Florian and G. Pfurtscheller, "Dynamic spectral analysis of event related EEG data," Electroenceph. Clin. Neurophysiol. 95, (1995) 303- 309.
[10] A. Schlogl, C. Neuper, G. Pfurtscheller, "Estimating the Mutual Information of an EEG-based Brain-Computer Interface," Biomedizinische Technik, 47, (2002) 3-8.
[11] M. Arnold, W. Miltner, H. Witte, R. Bauer, and C. Braun, "Adaptive AR Modeling of Non-stationary Time Series by Means of Kalman Filtering", IEEE Trans. Biomed. Eng., 45(5), 1998.
[12] J. Muthuswamyand, R.J. Roy, "The use of fuzzy integrals and bispectral analysis of the electroencephalogram to predict movement under anesthesia", IEEE Trans. Biomed. Eng. 46 (3) (1999) 291-299.
[13] R. R. Gharieb and A. Cichocki., "Segmentation and tracking of the electro-encephalogram signal using an adaptive recursive bandpass filter", Medical & Biological Engineering & Computing 2001,39, (2001) 237-248.
[14] R. R. Gharieb and A. Cichocki, "On-line EEG classification and sleep spindles detection using an adaptive recursive bandpass filter", In proceedings Acoustics, Speech, and Signal Processing (ICASSP-01) IEEE International Conference, Vol 2, (2001).
[15] BCI Competition 2003. .
[16] A. Schlogl, C. Keinrath, R. Scherer, G. Pfurtscheller, "Information transfer of an EEG-based brain-computer interface", Proc. International IEEE EMBS Conference on Neural Engineering, (2003) 641-644.
[17] R.V. Raja Kumar and R.N. Pal, "A gradient algorithm for centerfrequency adaptive recursive band pass filters", Proc. IEEE,73,(1985) 371-372.
[18] R.V. Raja Kumar and R.N. Pal., "Tracking of bandpass signals using center-frequency adaptive filters", IEEE Trans. Acoust. Speech signal processing., 38, (1990) 1710-1721.
[19] S. Haykin, Adaptive Filter Theory, 4th edition, Upper Saddle River, NJ: Prentice Hall, 2002, Ch 10.
[20] A. Schlogl, S. Roberts, G. Pfurtscheller, "A criterion for adaptive autoregressive models," Proceedings of the 22nd EMBS International Conference, (2000)1581-1582.
[21] R.A. Fisher, "The use of multiple measurements in taxonomic problems", Ann. Eugen. 7 (1936) 179-188.
[22] Burges C J C , "A tutorial on support vector machines for pattern recognitionition", Knowl. Discov. Data Min. 2 , (1998) 121-67
[23] Bennett K P and Campbell C, " Support vector machines: hype or hallelujah?", ACM SIGKDD Explor. Newslett. 2 ,(2000) 1-13.
[24] F Lotte, M Congedo, A L'ecuyer, F Lamarche , B Arnaldi1, "A review of classification algorithms for EEG-based brain-computer interfaces", J. Neural Eng. 4 (2007) R1-R13.
[25] Jain A K, Duin R P W and Mao J , " Statistical pattern recognition: a review", IEEE Trans. Pattern Anal. Mach.Intell. 22,(2000) 4-37
[26] Lemm, S.; Schafer, C. and Curio, G., "BCI competition 2003-data set III: probabilistic modeling of sensorimotor mu- rhythms for classification of imaginary hand movements", Biomedical Engineering, IEEE Transactions, 51, (2004) 1077 - 1080.
[27] P. Lingras, C. Butz, " Rough set based 1-v-1 and 1-v-r approaches to support vector machine multi classification", Inform. Sci. 177 (2007) 3782-3798.
[28] BCI7.