Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 217

Search results for: brain hemisphere

217 The Effect of the Hemispheres of the Brain and the Tone of Voice on Persuasion

Authors: Rica Jell de Laza, Jose Alberto Fernandez, Andrea Marie Mendoza, Qristin Jeuel Regalado

Abstract:

This study investigates whether participants experience different levels of persuasion depending on the hemisphere of the brain and the tone of voice. The experiment was performed on 96 volunteer undergraduate students taking an introductory course in psychology. The participants took part in a 2 x 3 (Hemisphere: left, right x Tone of Voice: positive, neutral, negative) Mixed Factorial Design to measure how much a person was persuaded. Results showed that the hemisphere of the brain and the tone of voice used did not significantly affect the results individually. Furthermore, there was no interaction effect. Therefore, the hemispheres of the brain and the tone of voice employed play insignificant roles in persuading a person.

Keywords: Dichotic listening, brain hemisphere, tone of voice, persuasion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 935
216 Can EEG Test Helps in Identifying Brain Tumor?

Authors: M. Sharanreddy, P. K. Kulkarni

Abstract:

Brain tumor is inherently serious and life-threatening disease. Brain tumor builds the intracranial pressure in the brain, by shifting the brain or pushing against the skull, and also damaging nerves and healthy brain tissues. This intracranial pressure affects and interferes with normal brain functionality, which results in generation of abnormal electrical activities from brain. With recent development in the medical engineering and instruments, EEG instruments are able to record the brain electric activities with high accuracy, which establishes EEG as a primary tool for diagnosing the brain abnormalities. Research scholars and general physicians, often face difficulty in understanding EEG patterns. This paper presents the EEG patterns associated with brain tumor by combing medicine theory and neurologist experience. Paper also explains the pros-cons of the EEG based brain tumor identification.

Keywords: Brain tumor, Electroencephalogram (EEG).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9869
215 EEG Analysis of Brain Dynamics in Children with Language Disorders

Authors: Hamed Alizadeh Dashagholi, Hossein Yousefi-Banaem, Mina Naeimi

Abstract:

Current study established for EEG signal analysis in patients with language disorder. Language disorder can be defined as meaningful delay in the use or understanding of spoken or written language. The disorder can include the content or meaning of language, its form, or its use. Here we applied Z-score, power spectrum, and coherence methods to discriminate the language disorder data from healthy ones. Power spectrum of each channel in alpha, beta, gamma, delta, and theta frequency bands was measured. In addition, intra hemispheric Z-score obtained by scoring algorithm. Obtained results showed high Z-score and power spectrum in posterior regions. Therefore, we can conclude that peoples with language disorder have high brain activity in frontal region of brain in comparison with healthy peoples. Results showed that high coherence correlates with irregularities in the ERP and is often found during complex task, whereas low coherence is often found in pathological conditions. The results of the Z-score analysis of the brain dynamics showed higher Z-score peak frequency in delta, theta and beta sub bands of Language Disorder patients. In this analysis there were activity signs in both hemispheres and the left-dominant hemisphere was more active than the right.

Keywords: EEG, electroencephalography, coherence methods, language disorder, power spectrum, z-score.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2277
214 Clustering-Based Detection of Alzheimer's Disease Using Brain MR Images

Authors: Sofia Matoug, Amr Abdel-Dayem

Abstract:

This paper presents a comprehensive survey of recent research studies to segment and classify brain MR (magnetic resonance) images in order to detect significant changes to brain ventricles. The paper also presents a general framework for detecting regions that atrophy, which can help neurologists in detecting and staging Alzheimer. Furthermore, a prototype was implemented to segment brain MR images in order to extract the region of interest (ROI) and then, a classifier was employed to differentiate between normal and abnormal brain tissues. Experimental results show that the proposed scheme can provide a reliable second opinion that neurologists can benefit from.

Keywords: Alzheimer, brain images, classification techniques, Magnetic Resonance Images, MRI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1473
213 Brainwave Classification for Brain Balancing Index (BBI) via 3D EEG Model Using k-NN Technique

Authors: N. Fuad, M. N. Taib, R. Jailani, M. E. Marwan

Abstract:

In this paper, the comparison between k-Nearest Neighbor (kNN) algorithms for classifying the 3D EEG model in brain balancing is presented. The EEG signal recording was conducted on 51 healthy subjects. Development of 3D EEG models involves pre-processing of raw EEG signals and construction of spectrogram images. Then, maximum PSD values were extracted as features from the model. There are three indexes for balanced brain; index 3, index 4 and index 5. There are significant different of the EEG signals due to the brain balancing index (BBI). Alpha-α (8–13 Hz) and beta-β (13–30 Hz) were used as input signals for the classification model. The k-NN classification result is 88.46% accuracy. These results proved that k-NN can be used in order to predict the brain balancing application.

Keywords: Brain balancing, kNN, power spectral density, 3D EEG model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2177
212 Functional Near Infrared Spectroscope for Cognition Brain Tasks by Wavelets Analysis and Neural Networks

Authors: Truong Quang Dang Khoa, Masahiro Nakagawa

Abstract:

Brain Computer Interface (BCI) has been recently increased in research. Functional Near Infrared Spectroscope (fNIRs) is one the latest technologies which utilize light in the near-infrared range to determine brain activities. Because near infrared technology allows design of safe, portable, wearable, non-invasive and wireless qualities monitoring systems, fNIRs monitoring of brain hemodynamics can be value in helping to understand brain tasks. In this paper, we present results of fNIRs signal analysis indicating that there exist distinct patterns of hemodynamic responses which recognize brain tasks toward developing a BCI. We applied two different mathematics tools separately, Wavelets analysis for preprocessing as signal filters and feature extractions and Neural networks for cognition brain tasks as a classification module. We also discuss and compare with other methods while our proposals perform better with an average accuracy of 99.9% for classification.

Keywords: functional near infrared spectroscope (fNIRs), braincomputer interface (BCI), wavelets, neural networks, brain activity, neuroimaging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1635
211 Analysis of Event-related Response in Human Visual Cortex with fMRI

Authors: Ayesha Zaman, Tanvir Atahary, Shahida Rafiq

Abstract:

Functional Magnetic Resonance Imaging(fMRI) is a noninvasive imaging technique that measures the hemodynamic response related to neural activity in the human brain. Event-related functional magnetic resonance imaging (efMRI) is a form of functional Magnetic Resonance Imaging (fMRI) in which a series of fMRI images are time-locked to a stimulus presentation and averaged together over many trials. Again an event related potential (ERP) is a measured brain response that is directly the result of a thought or perception. Here the neuronal response of human visual cortex in normal healthy patients have been studied. The patients were asked to perform a visual three choice reaction task; from the relative response of each patient corresponding neuronal activity in visual cortex was imaged. The average number of neurons in the adult human primary visual cortex, in each hemisphere has been estimated at around 140 million. Statistical analysis of this experiment was done with SPM5(Statistical Parametric Mapping version 5) software. The result shows a robust design of imaging the neuronal activity of human visual cortex.

Keywords: Echo Planner Imaging, Event related Response, General Linear Model, Visual Neuronal Response.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1212
210 Descriptive Study of Role Played by Exercise and Diet on Brain Plasticity

Authors: Mridul Sharma, Praveen Saroha

Abstract:

In today's world, everyone has become so busy in their to-do tasks and daily routine that they tend to ignore some of the basal components of our life, including exercise and diet. This comparative study analyzes the pathways of the relationship between exercise and brain plasticity and also includes another variable diet to study the effects of diet on learning by answering questions including which diet is known to be the best learning supporter and what are the recommended quantities of the same. Further, this study looks into inter-relation between diet and exercise, and also some other approach of the relation between diet and exercise on learning apart from through Brain Derived Neurotrophic Factor (BDNF).

Keywords: Basolateral amygdala, brain derived neurotrophic factor, brain plasticity, diet, exercise, mediterranean diet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 575
209 Vincristine-Dextran Complex Loaded Solid Lipid Nanoparticles for Drug Delivery to the Brain

Authors: E. Aboutaleb, R. Dinarvand

Abstract:

The purpose of this work was to inspect the potential of vincristine-dextran complex loaded solid lipid nanoparticles for drug delivery to the brain. The nanoparticles were stained with a fluorescence dye and their plasma pharmacokinetic and brain concentrations were investigated following injection to rats. The result revealed a significant improvement in the plasma concentration profile of the SLN injected animals as well as a sharp increased concentration in the brains.

Keywords: Brain, Coumarin-6, Nanoparticles, SLN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2104
208 Riemannian Manifolds for Brain Extraction on Multi-modal Resonance Magnetic Images

Authors: Mohamed Gouskir, Belaid Bouikhalene, Hicham Aissaoui, Benachir Elhadadi

Abstract:

In this paper, we present an application of Riemannian geometry for processing non-Euclidean image data. We consider the image as residing in a Riemannian manifold, for developing a new method to brain edge detection and brain extraction. Automating this process is a challenge due to the high diversity in appearance brain tissue, among different patients and sequences. The main contribution, in this paper, is the use of an edge-based anisotropic diffusion tensor for the segmentation task by integrating both image edge geometry and Riemannian manifold (geodesic, metric tensor) to regularize the convergence contour and extract complex anatomical structures. We check the accuracy of the segmentation results on simulated brain MRI scans of single T1-weighted, T2-weighted and Proton Density sequences. We validate our approach using two different databases: BrainWeb database, and MRI Multiple sclerosis Database (MRI MS DB). We have compared, qualitatively and quantitatively, our approach with the well-known brain extraction algorithms. We show that using a Riemannian manifolds to medical image analysis improves the efficient results to brain extraction, in real time, outperforming the results of the standard techniques.

Keywords: Riemannian manifolds, Riemannian Tensor, Brain Segmentation, Non-Euclidean data, Brain Extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1441
207 Computer Aided Diagnostic System for Detection and Classification of a Brain Tumor through MRI Using Level Set Based Segmentation Technique and ANN Classifier

Authors: Atanu K Samanta, Asim Ali Khan

Abstract:

Due to the acquisition of huge amounts of brain tumor magnetic resonance images (MRI) in clinics, it is very difficult for radiologists to manually interpret and segment these images within a reasonable span of time. Computer-aided diagnosis (CAD) systems can enhance the diagnostic capabilities of radiologists and reduce the time required for accurate diagnosis. An intelligent computer-aided technique for automatic detection of a brain tumor through MRI is presented in this paper. The technique uses the following computational methods; the Level Set for segmentation of a brain tumor from other brain parts, extraction of features from this segmented tumor portion using gray level co-occurrence Matrix (GLCM), and the Artificial Neural Network (ANN) to classify brain tumor images according to their respective types. The entire work is carried out on 50 images having five types of brain tumor. The overall classification accuracy using this method is found to be 98% which is significantly good.

Keywords: Artificial neural network, ANN, brain tumor, computer-aided diagnostic, CAD system, gray-level co-occurrence matrix, GLCM, level set method, tumor segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 933
206 Brain Drain of Doctors; Causes and Consequences in Pakistan

Authors: Muhammad Wajid Tahir, Rubina Kauser, Majid Ali Tahir

Abstract:

Pakistani doctors (MBBS) are emigrating towards developed countries for professional adjustments. This study aims to highlight causes and consequences of doctors- brain drain from Pakistan. Primary data was collected from Mayo Hospital, Lahore by interviewing doctors (n=100) through systematic random sampling technique. It found that various socio-economic and political conditions are working as push and pull factors for brain drain of doctors in Pakistan. Majority of doctors (83%) declared poor remunerations and professional infrastructure of health department as push factor of doctors- brain drain. 81% claimed that continuous instability in political situation and threats of terrorism are responsible for emigration of doctors. 84% respondents considered fewer opportunities of further studies responsible for their emigration. Brain drain of doctors is affecting health sector-s policies / programs, standard doctor-patient ratios and quality of health services badly.

Keywords: Brain Drain, Emigration, Remuneration, Politicalinstability, MBBS doctors

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4281
205 3D Brain Tumor Segmentation Using Level-Sets Method and Meshes Simplification from Volumetric MR Images

Authors: K. Aloui, M. S. Naceur

Abstract:

The main objective of this paper is to provide an efficient tool for delineating brain tumors in three-dimensional magnetic resonance images. To achieve this goal, we use basically a level-sets approach to delineating three-dimensional brain tumors. Then we introduce a compression plan of 3D brain structures based for the meshes simplification, adapted for time to the specific needs of the telemedicine and to the capacities restricted by network communication. We present here the main stages of our system, and preliminary results which are very encouraging for clinical practice.

Keywords: Medical imaging, level-sets, compression, meshess implification, telemedicine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1836
204 Region Based Hidden Markov Random Field Model for Brain MR Image Segmentation

Authors: Terrence Chen, Thomas S. Huang

Abstract:

In this paper, we present the region based hidden Markov random field model (RBHMRF), which encodes the characteristics of different brain regions into a probabilistic framework for brain MR image segmentation. The recently proposed TV+L1 model is used for region extraction. By utilizing different spatial characteristics in different brain regions, the RMHMRF model performs beyond the current state-of-the-art method, the hidden Markov random field model (HMRF), which uses identical spatial information throughout the whole brain. Experiments on both real and synthetic 3D MR images show that the segmentation result of the proposed method has higher accuracy compared to existing algorithms.

Keywords: Finite Gaussian mixture model, Hidden Markov random field model, image segmentation, MRI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1847
203 Brain MRI Segmentation and Lesions Detection by EM Algorithm

Authors: Mounira Rouaïnia, Mohamed Salah Medjram, Noureddine Doghmane

Abstract:

In Multiple Sclerosis, pathological changes in the brain results in deviations in signal intensity on Magnetic Resonance Images (MRI). Quantitative analysis of these changes and their correlation with clinical finding provides important information for diagnosis. This constitutes the objective of our work. A new approach is developed. After the enhancement of images contrast and the brain extraction by mathematical morphology algorithm, we proceed to the brain segmentation. Our approach is based on building statistical model from data itself, for normal brain MRI and including clustering tissue type. Then we detect signal abnormalities (MS lesions) as a rejection class containing voxels that are not explained by the built model. We validate the method on MR images of Multiple Sclerosis patients by comparing its results with those of human expert segmentation.

Keywords: EM algorithm, Magnetic Resonance Imaging, Mathematical morphology, Markov random model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1779
202 3D Segmentation, Compression and Wireless Transmission of Volumetric Brain MR Images

Authors: K. Aloui, M. S. Naceur

Abstract:

The main objective of this paper is to provide an efficient tool for delineating brain tumors in three-dimensional magnetic resonance images and set up compression-transmit schemes to distribute result to the remote doctor. To achieve this goal, we use basically a level-sets approach to delineating brain tumors in threedimensional. Then introduce a new compression and transmission plan of 3D brain structures based for the meshes simplification, adapted for time to the specific needs of the telemedicine and to the capacities restricted by wireless network communication. We present here the main stages of our system, and preliminary results which are very encouraging for clinical practice.

Keywords: Medical imaging, level-sets, compression, meshessimplification, telemedicine, wireless transmission.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1631
201 Dynamic Behavior of Brain Tissue under Transient Loading

Authors: Y. J. Zhou, G. Lu

Abstract:

In this paper, an analytical study is made for the dynamic behavior of human brain tissue under transient loading. In this analytical model the Mooney-Rivlin constitutive law is coupled with visco-elastic constitutive equations to take into account both the nonlinear and time-dependent mechanical behavior of brain tissue. Five ordinary differential equations representing the relationships of five main parameters (radial stress, circumferential stress, radial strain, circumferential strain, and particle velocity) are obtained by using the characteristic method to transform five partial differential equations (two continuity equations, one motion equation, and two constitutive equations). Analytical expressions of the attenuation properties for spherical wave in brain tissue are analytically derived. Numerical results are obtained based on the five ordinary differential equations. The mechanical responses (particle velocity and stress) of brain are compared at different radii including 5, 6, 10, 15 and 25 mm under four different input conditions. The results illustrate that loading curves types of the particle velocity significantly influences the stress in brain tissue. The understanding of the influence by the input loading cures can be used to reduce the potentially injury to brain under head impact by designing protective structures to control the loading curves types.

Keywords: Analytical method, mechanical responses, spherical wave propagation, traumatic brain injury.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2005
200 The Effect of Loperamide and Fentanyl on the Distribution Kinetics of Verapamil in the Lung and Brain in Sprague Dawley Rats

Authors: Iman A. Elkiweri, Ph.D, Martha C. Tissot van Patot, Ph.D., Yan Ling Zhang, Ph.D., Uwe Christians, Ph.D., Thomas K. Henthorn, M.D.,

Abstract:

Verapamil has been shown to inhibit fentanyl uptake in vitro and is a potent P-glycoprotein inhibitor. Tissue partitioning of loperamide, a commercially available opioid, is closely controlled by the P-gp efflux transporter. The following studies were designed to evaluate the effect of opioids on verapamil partitioning in the lung and brain, in vivo. Opioid (fentanyl or loperamide) was administered by intravenous infusion to Sprague Dawley rats alone or in combination with verapamil and plasma, with lung and brain tissues were collected at 1, 5, 6, 8, 10 and 60 minutes. Drug dispositions were modeled by recirculatory pharmacokinetic models. Fentanyl slightly increased the verapamil lung (PL) partition coefficient yet decreased the brain (PB) partition coefficient. Furthermore, loperamide significantly increased PLand PB. Fentanyl reduced the verapamil volume of distribution (V1) and verapamil elimination clearance (ClE). Fentanyl decreased verapamil brain partitioning, yet increased verapamil lung partitioning. Also, loperamide increased lung and brain partitioning in vivo. These results suggest that verapamil and fentanyl may be substrates of an unidentified inward transporter in brain tissue and confirm that verapamil and loperamide are substrates of the efflux transporter P-gp.

Keywords: Efflux transporter, elimination clearance, partition coefficient, verapamil

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1537
199 Expression of Gen Extracellular Matrix and Cell Adhesion Molecule of Brain Embrio Mice at GD-10 By Real Time RT-PCR

Authors: Yulia Irnidayanti, Win Darmanto, Agus Abadi

Abstract:

research goal was to determine the expression levels cDNA of brain embrio at gestation days 10 (GD-10). The Electroforesis DNA results showed that GAPDH, Fibronectin1, Ncam1, Tenascin, Vimentin, Neurofilament heavy, Neurofilament medium and Neurofilament low were 447 bp, 462 bp, 293 bp. 416 bp, 327 bp, 301 bp, 398 bp and 289 bp. Result of real-time RT-PCR on brain Embryo at gestation days 10 showed that the expression of copy gen Fibronectin 36 copies, Ncam 21,708 copies; Tenascin 24,505 copies; Vimentin 538,554 copies; Neurofilament heavy 2,419 copies; Neurofilament medium 92,928 copies; Neurofilament low 125,809 copies. Vimentin expressed gene copies is very high compared with other gene copies. This condition are caused by Vimentin, that contribute to proliferate of brain development. The vimentin role to cell proliferation of brain.

Keywords: GAPDH, Fibronectin, Ncam, Tenascin, vimentin, Neurofilamen heavy, Neurofilament medium, Neurofilamen low.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1585
198 Characterization of 3D-MRP for Analyzing of Brain Balancing Index (BBI) Pattern

Authors: N. Fuad, M. N. Taib, R. Jailani, M. E. Marwan

Abstract:

This paper discusses on power spectral density (PSD) characteristics which are extracted from three-dimensional (3D) electroencephalogram (EEG) models. The EEG signal recording was conducted on 150 healthy subjects. Development of 3D EEG models involves pre-processing of raw EEG signals and construction of spectrogram images. Then, the values of maximum PSD were extracted as features from the model. These features are analyzed using mean relative power (MRP) and different mean relative power (DMRP) technique to observe the pattern among different brain balancing indexes. The results showed that by implementing these techniques, the pattern of brain balancing indexes can be clearly observed. Some patterns are indicates between index 1 to index 5 for left frontal (LF) and right frontal (RF).

Keywords: Power spectral density, 3D EEG model, brain balancing, mean relative power, different mean relative power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1637
197 Unsupervised Segmentation using Fuzzy Logicbased Texture Spectrum for MRI Brain Images

Authors: G.Wiselin Jiji, L.Ganesan

Abstract:

Textures are replications, symmetries and combinations of various basic patterns, usually with some random variation one of the gray-level statistics. This article proposes a new approach to Segment texture images. The proposed approach proceeds in 2 stages. First, in this method, local texture information of a pixel is obtained by fuzzy texture unit and global texture information of an image is obtained by fuzzy texture spectrum. The purpose of this paper is to demonstrate the usefulness of fuzzy texture spectrum for texture Segmentation. The 2nd Stage of the method is devoted to a decision process, applying a global analysis followed by a fine segmentation, which is only focused on ambiguous points. The above Proposed approach was applied to brain image to identify the components of brain in turn, used to locate the brain tumor and its Growth rate.

Keywords: Fuzzy Texture Unit, Fuzzy Texture Spectrum, andPattern Recognition, segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1472
196 Electroencephalography Based Brain-Computer Interface for Cerebellum Impaired Patients

Authors: Young-Seok Choi

Abstract:

In healthy humans, the cortical brain rhythm shows specific mu (~6-14 Hz) and beta (~18-24 Hz) band patterns in the cases of both real and imaginary motor movements. As cerebellar ataxia is associated with impairment of precise motor movement control as well as motor imagery, ataxia is an ideal model system in which to study the role of the cerebellocortical circuit in rhythm control. We hypothesize that the EEG characteristics of ataxic patients differ from those of controls during the performance of a Brain-Computer Interface (BCI) task. Ataxia and control subjects showed a similar distribution of mu power during cued relaxation. During cued motor imagery, however, the ataxia group showed significant spatial distribution of the response, while the control group showed the expected decrease in mu-band power (localized to the motor cortex).

Keywords: Brain-computer interface, EEG, modulation, ataxia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1698
195 Motor Imaginary Signal Classification Using Adaptive Recursive Bandpass Filter and Adaptive Autoregressive Models for Brain Machine Interface Designs

Authors: Vickneswaran Jeyabalan, Andrews Samraj, Loo Chu Kiong

Abstract:

The noteworthy point in the advancement of Brain Machine Interface (BMI) research is the ability to accurately extract features of the brain signals and to classify them into targeted control action with the easiest procedures since the expected beneficiaries are of disabled. In this paper, a new feature extraction method using the combination of adaptive band pass filters and adaptive autoregressive (AAR) modelling is proposed and applied to the classification of right and left motor imagery signals extracted from the brain. The introduction of the adaptive bandpass filter improves the characterization process of the autocorrelation functions of the AAR models, as it enhances and strengthens the EEG signal, which is noisy and stochastic in nature. The experimental results on the Graz BCI data set have shown that by implementing the proposed feature extraction method, a LDA and SVM classifier outperforms other AAR approaches of the BCI 2003 competition in terms of the mutual information, the competition criterion, or misclassification rate.

Keywords: Adaptive autoregressive, adaptive bandpass filter, brain machine Interface, EEG, motor imaginary.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2613
194 Study of EEGs from Somatosensory Cortex and Alzheimer's Disease Sources

Authors: Md R. Bashar, Yan Li, Peng Wen

Abstract:

This study is to investigate the electroencephalogram (EEG) differences generated from a normal and Alzheimer-s disease (AD) sources. We also investigate the effects of brain tissue distortions due to AD on EEG. We develop a realistic head model from T1 weighted magnetic resonance imaging (MRI) using finite element method (FEM) for normal source (somatosensory cortex (SC) in parietal lobe) and AD sources (right amygdala (RA) and left amygdala (LA) in medial temporal lobe). Then, we compare the AD sourced EEGs to the SC sourced EEG for studying the nature of potential changes due to sources and 5% to 20% brain tissue distortions. We find an average of 0.15 magnification errors produced by AD sourced EEGs. Different brain tissue distortion models also generate the maximum 0.07 magnification. EEGs obtained from AD sources and different brain tissue distortion levels vary scalp potentials from normal source, and the electrodes residing in parietal and temporal lobes are more sensitive than other electrodes for AD sourced EEG.

Keywords: Alzheimer's disease (AD), brain tissue distortion, electroencephalogram, finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1608
193 Analysis of Brain Activities due to Differences in Running Shoe Properties

Authors: K. Okubo, Y. Kurihara, T. Kaburagi, K. Watanabe

Abstract:

Many of the ever-growing elderly population require exercise, such as running, for health management. One important element of a runner’s training is the choice of shoes for exercise; shoes are important because they provide the interface between the feet and road. When we purchase shoes, we may instinctively choose a pair after trying on many different pairs of shoes. Selecting the shoes instinctively may work, but it does not guarantee a suitable fit for running activities. Therefore, if we could select suitable shoes for each runner from the viewpoint of brain activities, it would be helpful for validating shoe selection. In this paper, we describe how brain activities show different characteristics during particular task, corresponding to different properties of shoes. Using five subjects, we performed a verification experiment, applying weight, softness, and flexibility as shoe properties. In order to affect the shoe property’s differences to the brain, subjects run for 10 min. Before and after running, subjects conducted a paced auditory serial addition task (PASAT) as the particular task; and the subjects’ brain activities during the PASAT are evaluated based on oxyhemoglobin and deoxyhemoglobin relative concentration changes, measured by near-infrared spectroscopy (NIRS). When the brain works actively, oxihemoglobin and deoxyhemoglobin concentration drastically changes; therefore, we calculate the maximum values of concentration changes. In order to normalize relative concentration changes after running, the maximum value are divided by before running maximum value as evaluation parameters. The classification of the groups of shoes is expressed on a self-organizing map (SOM). As a result, deoxyhemoglobin can make clusters for two of the three types of shoes.

Keywords: Brain activities, NIRS, PASAT, running shoes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2029
192 Viscoelastic Modeling of Brain MRE Data Using FE Method

Authors: H. Ajabi Naeeni, M. Haghpanahi

Abstract:

Dynamic shear test on simulated phantom can be used to validate magnetic resonance elastography (MRE) measurements. Phantom gel has been usually utilized for the cell culture of cartilage and soft tissue and also been used for mechanical property characterization using imaging systems. The viscoelastic property of the phantom would be important for dynamic experiments and analyses. In this study, An axisymmetric FE model is presented for determining the dynamic shear behaviour of brain simulated phantom using ABAQUS. The main objective of this study was to investigate the effect of excitation frequencies and boundary conditions on shear modulus and shear viscosity in viscoelastic media.

Keywords: Viscoelastic, MR Elastography, Finite Element, Brain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1496
191 A Brain Inspired Approach for Multi-View Patterns Identification

Authors: Yee Ling Boo, Damminda Alahakoon

Abstract:

Biologically human brain processes information in both unimodal and multimodal approaches. In fact, information is progressively abstracted and seamlessly fused. Subsequently, the fusion of multimodal inputs allows a holistic understanding of a problem. The proliferation of technology has exponentially produced various sources of data, which could be likened to being the state of multimodality in human brain. Therefore, this is an inspiration to develop a methodology for exploring multimodal data and further identifying multi-view patterns. Specifically, we propose a brain inspired conceptual model that allows exploration and identification of patterns at different levels of granularity, different types of hierarchies and different types of modalities. A structurally adaptive neural network is deployed to implement the proposed model. Furthermore, the acquisition of multi-view patterns with the proposed model is demonstrated and discussed with some experimental results.

Keywords: Multimodal, Granularity, Hierarchical Clustering, Growing Self Organising Maps, Data Mining

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1318
190 Impact of Music on Brain Function during Mental Task using Electroencephalography

Authors: B. Geethanjali, K. Adalarasu, R. Rajsekaran

Abstract:

Music has a great effect on human body and mind; it can have a positive effect on hormone system. Objective of this study is to analysis the effect of music (carnatic, hard rock and jazz) on brain activity during mental work load using electroencephalography (EEG). Eight healthy subjects without special musical education participated in the study. EEG signals were acquired at frontal (Fz), parietal (Pz) and central (Cz) lobes of brain while listening to music at three experimental condition (rest, music without mental task and music with mental task). Spectral powers features were extracted at alpha, theta and beta brain rhythms. While listening to jazz music, the alpha and theta powers were significantly (p < 0.05) high for rest as compared to music with and without mental task in Cz. While listening to Carnatic music, the beta power was significantly (p < 0.05) high for with mental task as compared to rest and music without mental task at Cz and Fz location. This finding corroborates that attention based activities are enhanced while listening to jazz and carnatic as compare to Hard rock during mental task.

Keywords: Music, Brain Function, Electroencephalography (EEG), Mental Task, Features extraction parameters

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4087
189 Multi-Layer Perceptron Neural Network Classifier with Binary Particle Swarm Optimization Based Feature Selection for Brain-Computer Interfaces

Authors: K. Akilandeswari, G. M. Nasira

Abstract:

Brain-Computer Interfaces (BCIs) measure brain signals activity, intentionally and unintentionally induced by users, and provides a communication channel without depending on the brain’s normal peripheral nerves and muscles output pathway. Feature Selection (FS) is a global optimization machine learning problem that reduces features, removes irrelevant and noisy data resulting in acceptable recognition accuracy. It is a vital step affecting pattern recognition system performance. This study presents a new Binary Particle Swarm Optimization (BPSO) based feature selection algorithm. Multi-layer Perceptron Neural Network (MLPNN) classifier with backpropagation training algorithm and Levenberg-Marquardt training algorithm classify selected features.

Keywords: Brain-Computer Interfaces (BCI), Feature Selection (FS), Walsh–Hadamard Transform (WHT), Binary Particle Swarm Optimization (BPSO), Multi-Layer Perceptron (MLP), Levenberg–Marquardt algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1844
188 Performance Analysis of Brain Tumor Detection Based On Image Fusion

Authors: S. Anbumozhi, P. S. Manoharan

Abstract:

Medical Image fusion plays a vital role in medical field to diagnose the brain tumors which can be classified as benign or malignant. It is the process of integrating multiple images of the same scene into a single fused image to reduce uncertainty and minimizing redundancy while extracting all the useful information from the source images. Fuzzy logic is used to fuse two brain MRI images with different vision. The fused image will be more informative than the source images. The texture and wavelet features are extracted from the fused image. The multilevel Adaptive Neuro Fuzzy Classifier classifies the brain tumors based on trained and tested features. The proposed method achieved 80.48% sensitivity, 99.9% specificity and 99.69% accuracy. Experimental results obtained from fusion process prove that the use of the proposed image fusion approach shows better performance while compared with conventional fusion methodologies.

Keywords: Image fusion, Fuzzy rules, Neuro-fuzzy classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2812