Region Based Hidden Markov Random Field Model for Brain MR Image Segmentation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33093
Region Based Hidden Markov Random Field Model for Brain MR Image Segmentation

Authors: Terrence Chen, Thomas S. Huang

Abstract:

In this paper, we present the region based hidden Markov random field model (RBHMRF), which encodes the characteristics of different brain regions into a probabilistic framework for brain MR image segmentation. The recently proposed TV+L1 model is used for region extraction. By utilizing different spatial characteristics in different brain regions, the RMHMRF model performs beyond the current state-of-the-art method, the hidden Markov random field model (HMRF), which uses identical spatial information throughout the whole brain. Experiments on both real and synthetic 3D MR images show that the segmentation result of the proposed method has higher accuracy compared to existing algorithms.

Keywords: Finite Gaussian mixture model, Hidden Markov random field model, image segmentation, MRI.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1063070

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2102

References:


[1] J. Besag, Spatial interaction and the statistical analysis of lattice system (with discussion), J. of Royal Statist. Soc., series B, 36(2):192-326, 1974.
[2] T. F. Chan, and S. Esedoglu, Aspects of Total Variation Regularized L1 Function Approximation'' to appear in USIAMJ. Appl. Math. 2005.
[3] L. P. Clarke, R. P. Velthuizen, M. A. Camacho, J. J. Heine, M. Vaidyanathan, L. O. Hall, R. W. Hatcher, and M. L. Silbiger, MRI Segmentation: methods and applications, Megnetic Resonance Imaging, 13(3):343-368, 1995.
[4] M. B. Cuadra, B. Platel, E. Solanas, T. Butz, and J. -Ph. Thiran, Validation of tissue modelization and classification techniques in T1-weighted MR brain images, MICCAI, pp. 290-297, 2002.
[5] R. Guillemaud, and J. M. Brady, Estimating the bias field of MR images, IEEE Transactions on Medical. Imaging, 16(3):238-251, 1997.
[6] R. K. -S. Kwan, A. C. Evans, and G. B. Pike, MRI simulation-based evaluation of image-processing and classification methods, IEEE Transactions on Medical. Imaging, 18(11):1085-1097, Nov, 1999.
[7] E. Solanas, V. Duay, O. Cuisenaire, and J. -P.Thiran, Relative anatomical location for statistical non-parameter brain tissue classification in MR images, Int-l conference on image processing (ICIP), 2001.
[8] W. M. Wells, E. L. Grimson, R. Kikinis, and F. A. Jolesz, Adaptive segmentation of MRI data, IEEE Transactions on Medical. Imaging , 15(4):429-442, 1996.
[9] Y. Zhang, M. Brady, and S. Smith, Segmentation of brain MR images through a hidden Markov random field model and the expectationmaximization algorithm, IEEE Transactions on Medical. Imaging, 20(1):45-57, 2001.
[10] S. C. Zhu, and A. Yuille, Region Competition: Unifying snakes, region growing, and Bayes/MDL for multiband image segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(9):884-900, 1996.