Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31198
Riemannian Manifolds for Brain Extraction on Multi-modal Resonance Magnetic Images

Authors: Mohamed Gouskir, Belaid Bouikhalene, Hicham Aissaoui, Benachir Elhadadi

Abstract:

In this paper, we present an application of Riemannian geometry for processing non-Euclidean image data. We consider the image as residing in a Riemannian manifold, for developing a new method to brain edge detection and brain extraction. Automating this process is a challenge due to the high diversity in appearance brain tissue, among different patients and sequences. The main contribution, in this paper, is the use of an edge-based anisotropic diffusion tensor for the segmentation task by integrating both image edge geometry and Riemannian manifold (geodesic, metric tensor) to regularize the convergence contour and extract complex anatomical structures. We check the accuracy of the segmentation results on simulated brain MRI scans of single T1-weighted, T2-weighted and Proton Density sequences. We validate our approach using two different databases: BrainWeb database, and MRI Multiple sclerosis Database (MRI MS DB). We have compared, qualitatively and quantitatively, our approach with the well-known brain extraction algorithms. We show that using a Riemannian manifolds to medical image analysis improves the efficient results to brain extraction, in real time, outperforming the results of the standard techniques.

Keywords: Riemannian Manifolds, Riemannian Tensor, Brain Segmentation, Non-Euclidean data, Brain Extraction

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1109804

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1395

References:


[1] F. Zhang and E. R. Hancock, “New riemannian techniques for directional and tensorial image data,” Pattern Recognition, vol. 43, no. 4, pp. 1590 – 1606, 2010. (Online). Available: http://www.sciencedirect.com/science/article/pii/S0031320309003616
[2] X. Pennec, P. Fillard, and N. Ayache, “A riemannian framework for tensor computing,” International Journal of Computer Vision, vol. 66, no. 1, pp. 41–66, 2006. (Online). Available: http://dx.doi.org/10.1007/s11263-005-3222-z
[3] P. Thomas Fletcher and S. Joshi, “Riemannian geometry for the statistical analysis of diffusion tensor data,” Signal Processing, vol. 87, pp. 250–262, 2007.
[4] A. L. Troter, G. Auzias, and O. Coulon, “Automatic sulcal line extraction on cortical surfaces using geodesic path density maps.” NeuroImage, vol. 61, pp. 941–949, 2012.
[5] X. Hao, K. Zygmunt, R. T. Whitaker, and P. T. Fletcher, “Improved segmentation of white matter tracts with adaptive riemannian metrics.” Medical Image Analysis, vol. 18, pp. 161–175, 2014.
[6] S. Bak, E. Corve, F. Brmond, and M. Thonnat, “Boosted human re-identification using riemannian manifolds,” Image and Vision Computing, vol. 30, pp. 443–452, 2012.
[7] S. Barbieri, M. H. Bauer, J. Klein, J. Moltz, C. Nimsky, and H. K. Hahn, “Dti segmentation via the combined analysis of connectivity maps and tensor distances,” NeuroImage, vol. 60, pp. 1025–1035, 2012.
[8] J. I. Pastore, E. G. Moler, and V. L. Ballarin, “Segmentation of brain magnetic resonance images through morphological operators and geodesic distance,” Digital Signal Processing, vol. 15, no. 2, pp. 153 – 160, 2005. (Online). Available: http://www.sciencedirect.com/science/article/pii/S1051200404001162
[9] H. Li, Z. Xue, K. Cui, and S. T. Wong, “Diffusion tensor-based fast marching for modeling human brain connectivity network,” Computerized Medical Imaging and Graphics, vol. 35, no. 3, pp. 167–178, 2011. (Online). Available: http://www.sciencedirect.com/science/article/pii/S0895611110001047
[10] R. Caseiro, P. Martins, J. F. Henriques, and J. Batista, “A nonparametric riemannian framework on tensor field with application to foreground segmentation,” Pattern Recognition, vol. 45, no. 11, pp. 3997 – 4017, 2012. (Online). Available: http://www.sciencedirect.com/science/article/pii/S0031320312001689
[11] Q. Ain, M. A. Jaffar, and T.-S. Choi, “Fuzzy anisotropic diffusion based segmentation and texture based ensemble classification of brain tumor,” Applied Soft Computing, vol. 21, no. 0, pp. 330 – 340, 2014. (Online). Available: http://www.sciencedirect.com/science/article/pii/S1568494614001264
[12] L. Astola, A. Fuster, and L. Florack, “A riemannian scalar measure for diffusion tensor images,” Pattern Recognition, vol. 44, pp. 1885–1891, 2011.
[13] P. Thomas Fletcher, S. Venkatasubramanian, and S. Joshi, “The geometric median on riemannian manifolds with application to robust atlas estimation,” NeuroImage, vol. 45, pp. S143–S152, 2009.
[14] C. Lopez-Molina, M. Galar, H. Bustince, and B. De Baets, “On the impact of anisotropic diffusion on the edge detection,” Pattern Recognition, vol. 47, pp. 270–281, 2014.
[15] K. Somasundaram and T. Kalaiselvi, “Fully automatic brain extraction algorithm for axial t2-weighted magnetic resonance images,” Computers in Biology and medicine, vol. 40, pp. 811–822, 2010.
[16] M. Somasundaram and T. Kalaiselvi, “Automatic brain extraction methods for t1 magnetic resonance images using region labeling and morphological operations,” Computers in Biology and medicine, vol. 41, pp. 716–725, 2011.
[17] S. F. Eskildsen, P. Coupe, V. Fonov, J. V. Manjon, K. K. Leung, N. Guizard, S. N. Wassef, L. R. stergaard, and D. L. Collins, “Beast brain extraction based on nonlocal segmentation technique,” NeuroImage, vol. 59, pp. 2362–23–73, 2012.
[18] G. Gilanie, M. Attique, Hafeez-Ullah, S. Naweed, E. Ahmed, and M. Ikram, “Object extraction from t2 weighted brain mr image using histogram based gradient calculation,” Pattern Recognition Letters, vol. 34, pp. 1356–1363, 2013.
[19] A. H. Foruzan, I. kalantari Khandani, and S. B. Shokouhi, “Segmentation of brain tessues using a 3-d multi-layer hidden markov model,” Computers in Biology and Medicine, vol. 43, pp. 121–130, 2013.
[20] C. Ballagan, X. Wang, M. Fulham, S. Eberl, and D. dagan Feng, “Lung tumor segmentation in pet images using graph cuts,” Computer Methods and Programs in Biomedicine, vol. 43, pp. 121–130, 2013.
[21] E. Roura, A. Oliver, M. Cabezas, J. C. Vilanova, lex Rovira, L. Rami-Torrent, and X. Llad, “Marga: Multispectral adaptive region growing algorithm for brain extraction on axial {MRI},” Computer Methods and Programs in Biomedicine, vol. 113, no. 2, pp. 655 – 673, 2014. (Online). Available: http://www.sciencedirect.com/science/article/pii/S0169260713003878
[22] S. Smith, “Fast robust automated brain extraction,” Human Brain Mapping, vol. 17, no. 3, pp. 143–155, 2002.
[23] D. W. Shattuck, S. R. Sandor-Leahy, K. A. Schaper, D. A. Rottenberg, and R. M. Leahy, “Magnetic resonance image tissue classification using a partial volume model,” NeuroImage, vol. 13, no. 5, pp. 856 – 876, 2001. (Online). Available: http://www.sciencedirect.com/science/article/pii/S1053811900907304
[24] V. Popescu, M. Battaglini, W. Hoogstrate, S. Verfaillie, I. Sluimer, R. van Schijndel, B. van Dijk, K. Cover, D. Knol, M. Jenkinson, F. Barkhof, N. de Stefano, and H. Vrenken, “Optimizing parameter choice for fsl-brain extraction tool (bet) on 3d {T1} images in multiple sclerosis,” NeuroImage, vol. 61, no. 4, pp. 1484 – 1494, 2012. (Online). Available: http://www.sciencedirect.com/science/article/pii/S1053811912003552
[25] J. G. Park and C. Lee, “Skull stripping based on region growing for magnetic resonance brain images,” NeuroImage, vol. 47, no. 4, pp. 1394 – 1407, 2009. (Online). Available: http://www.sciencedirect.com/science/article/pii/S1053811909004145
[26] wolfgang Kuhnel, Differential Geometry: Curves, Surfaces, Manifolds, 2nd ed. American Mathematical Society, 2006.
[27] S. DiZenzo, “A note on the gradient of a multi-image,” Computer Vision, Graphics,and Image Processing, vol. 33, pp. 116–125, 1986.
[28] A. G. Weber, “The usc texture mosaic images,” Signal and Image Processing Institute, 2004.
[29] C. Loizou, V. Murray, M. Pattichis, I. Seimenis, M. Pantziaris, and C. Pattichis, “Multi-scale amplitude modulation-frequency modulation (am-fm) texture analysis of multiple sclerosis in brain mri images,” IEEE Trans. Inform. Tech. Biomed., vol. 15, no. 1, pp. 119–129, 2011.
[30] C. Loizou, E. Kyriacou, I. Seimenis, M. Pantziaris, S. Petroudi, M. Karaolis, and C. Pattichis, “Brain white matter lesion classification in multiple sclerosis subjects for the prognosis of future disability,,” Intelligent Decision Technologies Journal (IDT), vol. 7, pp. 3–10, 2013.
[31] J.-B. Fiot, L. D. Cohen, P. Raniga, and J. Fripp, “Efficient brain lesion segmentation using multi-modality tissue-based feature selection and support vector machines,” International Journal for Numerical Methods in Biomedical Engineering, vol. 29, no. 9, pp. 905–915, 2013. (Online). Available: http://dx.doi.org/10.1002/cnm.2537
[32] J. Ashburner and K. J. Friston, “Unified segmentation,” NeuroImage, vol. 26, no. 3, pp. 839 – 851, 2005. (Online). Available: http://www.sciencedirect.com/science/article/pii/S1053811905001102