Clustering-Based Detection of Alzheimer's Disease Using Brain MR Images
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33087
Clustering-Based Detection of Alzheimer's Disease Using Brain MR Images

Authors: Sofia Matoug, Amr Abdel-Dayem

Abstract:

This paper presents a comprehensive survey of recent research studies to segment and classify brain MR (magnetic resonance) images in order to detect significant changes to brain ventricles. The paper also presents a general framework for detecting regions that atrophy, which can help neurologists in detecting and staging Alzheimer. Furthermore, a prototype was implemented to segment brain MR images in order to extract the region of interest (ROI) and then, a classifier was employed to differentiate between normal and abnormal brain tissues. Experimental results show that the proposed scheme can provide a reliable second opinion that neurologists can benefit from.

Keywords: Alzheimer, brain images, classification techniques, Magnetic Resonance Images, MRI.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1124377

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1836

References:


[1] M. L. Schroeter, T. Stein, N. Maslowski and J. Neumann, "Neural correlates of Alzheimer's disease and mild cognitive impairment A meta-analysis including 1351 patients," NeuroImage, vol. 47, no. 4, pp. 1196-1206, 2009.
[2] Alzheimer's association, "What We Know Today About Alzheimer's Disease," (Online). Available: http://www.alz.org/research/science/ alzheimers_disease_causes.asp. (Accessed 21 July 2013).
[3] MedecineNet, "Magnetic Resonance Imaging (MRI Scan)," (Online). Available: http://www.medicinenet.com/mri_scan/article.htm. (Accessed 21 July 2013).
[4] T. Kapur, W. E. L. Grimson, W. M. Wells and R. Kikinis, "Segmentation of brain tissue from magnetic resonance images," Medical Image Analysis, vol. 1, no. 2, pp. 109-127, June 1996.
[5] W. M. I. Wells, W. E. L. Grimson, R. Kikinis and F. A. Jolesz, "Adaptive segmentation of MRI data," Medical Imaging, IEEE Transactions on, vol. 15, no. 4, pp. 429-442, August 1996.
[6] K. Held, E. Kops, B. Krause, W. I. Wells, R. Kikinis and H. Muller-Gartner, "Markov random field segmentation of brain MR images," Medical Imaging, IEEE Transactions on, vol. 16, no. 6, pp. 878-886, December 1997.
[7] D. L. Pham, C. Xu and J. L. Prince, "Current methods in medical image segmentation," Annual review of biomedical engineering, vol. 2, pp. 315-337, 2000.
[8] Y. Zhang, M. Brady and S. Smith, "Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm," Medical Imaging, IEEE Transactions on, vol. 20, no. 1, pp. 45-57, January 2001.
[9] B. Fischl, D. H. Salat, E. Busa, M. Albert, M. Dieterich, C. Haselgrove, A. van der Kouwe, R. Killiany, D. Kennedy, S. Klaveness, A. Montillo, N. Makris, B. Rosen and A. M. Dale, "Whole Brain Segmentation: Automated Labeling of Neuroanatomical Structures in the Human Brain," Neuron, vol. 33, no. 3, pp. 341-355, 31 January 2002.
[10] K. Van Leemput, F. Maes, D. Vandermeulen and P. Suetens, "A unifying framework for partial volume segmentation of brain MR images," Medical Imaging, IEEE Transactions on, vol. 22, no. 1, pp. 105-119, January 2003.
[11] V. Grau, A. U. J. Mewes, M. Alcaniz, R. Kikinis and S. Warfield, "Improved watershed transform for medical image segmentation using prior information," Medical Imaging, IEEE Transactions on, vol. 23, no. 4, pp. 447-458, April 2004.
[12] R. de Boer, F. van der Lijn, H. A. Vrooman, M. W. Vernooij, M. A. Ikram, M. M. Breteler and W. J. Niessen, "Automatic segmentation of brain tissue and white matter lesions in MRI," in Biomedical Imaging: From Nano to Macro, 2007. ISBI 2007. 4th IEEE International Symposium on, 2007.
[13] R. De Boer, H. A. Vrooman, F. Van der Lijn, M. W. Vernooij, M. A. Ikram, A. Van der Lugt, M. M. Breteler and W. J. Niessen, "White matter lesion extension to automatic brain tissue segmentation on MRI," NeuroImage, vol. 45, no. 4, pp. 1151-1161, 1 May 2009.
[14] Z. Tu, K. L. Narr, P. Dollar, I. Dinov, P. M. Thompson and A. W. Toga, "Brain Anatomical Structure Segmentation by Hybrid Discriminative/ Generative Models," IEEE Transactions on Medical Imaging, vol. 27, no. 4, pp. 495-508, April 2008.
[15] O. Colliot, G. Chételat, M. Chupin, B. Desgranges, B. Magnin, H. Benali, B. Dubois, L. Garnero, F. Eustache and S. Lehéricy, "Discrimination between Alzheimer Disease, Mild Cognitive Impairment, and Normal Aging by Using Automated Segmentation of the Hippocampus," Radiology, vol. 248, no. 1, pp. 194-201, July 2008.
[16] G. McKhann, D. Drachman, M. Folstein, R. Katzman, D. Price and E. M. Stadlan, "Clinical diagnosis of Alzheimer's disease: Report of the NINCDS‐ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease," Neurology, vol. 34, no. 7, pp. 939-944, July 1984.
[17] R. C. Petersen, R. Doody, A. Kurz, R. C. Mohs, J. C. Morris, P. V. Rabins, K. Ritchie, M. Rossor, L. Thal and B. Winblad, "Current concepts in mild cognitive impairment," Archives of Neurology, vol. 58, no. 12, pp. 1985-1992, 2001.
[18] Y. Zhang, B. Matuszewski, L. Shark and C. Moore, "Medical Image Segmentation Using New Hybrid Level-Set Method," in BioMedical Visualization, 2008. MEDIVIS '08. Fifth International Conference, London, 2008.
[19] J. H. Morra, Z. Tu, L. G. Apostolova, A. E. Green, C. Avedissian, S. K. Madsen, N. Parikshak, X. Hua, A. W. Toga, C. R. Jack, M. W. Weiner and P. M. Thompson, "Validation of a fully automated 3D hippocampal segmentation method using subjects with Alzheimer's disease mild cognitive impairment, and elderly controls," NeuroImage, vol. 43, no. 1, pp. 59-68, October 2008.
[20] J. Morra, Z. Tu, L. Apostolova, A. Green, A. Toga and P. Thompson, "Comparison of AdaBoost and Support Vector Machines for Detecting Alzheimer's Disease Through Automated Hippocampal Segmentation," Medical Imaging, IEEE Transactions on, vol. 29, no. 1, pp. 30-43, January 2010.
[21] Laboratory for Computational Neuroimaging, "FreeSurfer," (Online). Available: http://surfer.nmr.mgh.harvard.edu. (Accessed 12 March 2014).
[22] D. W. Shattuck, G. Prasad, M. Mirza, K. L. Narr and A. W. Toga, "Online resource for validation of brain segmentation methods.," NeuroImage, vol. 45, no. 2, pp. 431-439, 1 April 2009.
[23] University of California, Los Angeles, "Segmentation Validation Engine," (Online). Available: http://sve.bmap.ucla.edu/. (Accessed 12 March 2014).
[24] S. M. Smith, "Fast robust automated brain extraction," Human Brain Mapping, vol. 17, no. 3, p. 143–155, November 2002.
[25] F. Ségonne, A. Dale, E. Busa, M. Glessner, D. Salat, H. Hahn and B. Fischl, "A hybrid approach to the skull stripping problem in MRI," NeuroImage, vol. 22, no. 3, pp. 1060-1075, July 2004.
[26] D. W. Shattuck, S. R. Sandor-Leahy, K. A. Schaper, D. A. Rottenberg and R. M. Leahy, "Magnetic Resonance Image Tissue Classification Using a Partial Volume Model," NeuroImage, vol. 13, no. 5, pp. 856-876, May 2001.
[27] A. Huang, R. Abugharbieh and R. Tam, "A Hybrid Geometric Statistical Deformable Model for Automated 3-D Segmentation in Brain MRI," Biomedical Engineering, IEEE Transactions on, vol. 56, no. 7, pp. 1838-1848, 2009.
[28] G. Helms, B. Draganski, R. Frackowiak, J. Ashburner and N. Weiskopf, "Improved segmentation of deep brain grey matter structures using magnetization transfer (MT) parameter maps," Neuroimage, vol. 47, no. 1, pp. 194-198, August 2009.
[29] S. AlZu'bi and A. Amira, "3D medical volume segmentation using hybrid multiresolution statistical approaches," Advances in Artificial Intelligence - Special issue on machine learning paradigms for modeling spatial and temporal information in multimedia data mining, vol. 2010, no. 2, pp. 1-15, January 2010.
[30] J. M. Lötjönen, R. Wolz, J. R. Koikkalainen, L. Thurfjell, G. Waldemar, H. Soininen and D. Rueckert, "Fast and robust multi-atlas segmentation of brain magnetic resonance images," NeuroImage, vol. 49, no. 3, pp. 2352-2365, 1 February 2010.
[31] R. A. Heckemann, S. Keihaninejad, P. Aljabar, D. Rueckert, J. V. Hajnal and A. Hammers, "Improving intersubject image registration using tissue-class information benefits robustness and accuracy of multi-atlas based anatomical segmentation," Neuroimage, vol. 51, no. 1, pp. 221--227, 15 May 2010.
[32] R. A. Heckemann, S. Keihaninejad, P. Aljabar, D. Rueckert, J. V. Hajnal and A. Hammers, "Segmenting brain images with MAPER," (Online). Available: http://www.soundray.org/maper/. (Accessed 13 March 2014).
[33] D. Rivest-Hénault and M. Cheriet, "Unsupervised MRI segmentation of brain tissues using a local linear model and level set," Magnetic Resonance Imaging, vol. 29, no. 2, pp. 243-259, February 2011.
[34] B. Magnin, L. Mesrob, S. Kinkingnéhun, M. Pélégrini-Issac, O. Colliot, M. Sarazin, B. Dubois, S. Lehéricy and H. Benali, "Support vector machine-based classification of Alzheimer’s disease from whole-brain anatomical MRI," Neuroradiology, vol. 51, no. 2, pp. 73-83, February 2009.
[35] N. Tzourio-Mazoyer, B. Landeau, D. Papathanassiou, F. Crivello, O. Etard, N. Delcroix, B. Mazoyer and M. Joliot, "Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain," NeuroImage, vol. 15, no. 1, pp. 273-289, January 2002.
[36] E. C. Robinson, A. Hammers, A. Ericsson, A. D. Edwards and D. Rueckert, "Identifying population differences in whole-brain structural networks: A machine learning approach," NeuroImage, vol. 50, no. 3, pp. 910-919, 15 April 2010.
[37] D. Zhang, Y. Wang, L. Zhou, H. Yuan and D. Shen, "Multimodal classification of Alzheimer's disease and mild cognitive impairment," Neuroimage, vol. 55, no. 3, pp. 856-867, 1 April 2011.
[38] R. Cuingnet, E. Gerardin, J. Tessieras, G. Auzias, S. Lehéricy, M.-O. Habert, M. Chupin, H. Benali and O. Colliot, "Automatic classification of patients with Alzheimer's disease from structural MRI: A comparison of ten methods using the ADNI database," NeuroImage, vol. 56, no. 2, pp. 766-781, 15 May 2011.
[39] J. Ashburner, "A fast diffeomorphic image registration algorithm," NeuroImage, vol. 38, no. 1, pp. 95-113, 15 October 2007.
[40] J. Ashburner and K. J. Friston, "Unified segmentation," NeuroImage, vol. 26, no. 3, p. 839–851, 1 July 2005.
[41] M. Balafar, A. Ramli, M. Saripan and S. Mashohor, "Review of brain MRI image segmentation methods," Artificial Intelligence Review, vol. 33, no. 3, pp. 261-274, March 2010.
[42] Alzheimer’s disease Neuroimaging Initiative (ADNI) database: http://adni.loni.ucla.edu/, 2015.
[43] P. Baldi, S. Brunak, Y. Chauvin, C. A. F. Andersen and H. Nielsen, "Assessing the accuracy of prediction algorithms for classification: an overview," Bioinformatics, vol. 16, no. 5, pp. 412-424, 2000.