
  

Abstract—In this paper, the comparison between k-Nearest 

Neighbor (kNN) algorithms for classifying the 3D EEG model in 

brain balancing is presented. The EEG signal recording was 

conducted on 51 healthy subjects. Development of 3D EEG models 

involves pre-processing of raw EEG signals and construction of 

spectrogram images. Then, maximum PSD values were extracted as 

features from the model. There are three indexes for balanced brain; 

index 3, index 4 and index 5. There are significant different of the 

EEG signals due to the brain balancing index (BBI). Alpha-α (8–13 

Hz) and beta-β (13–30 Hz) were used as input signals for the 

classification model. The k-NN classification result is 88.46% 

accuracy. These results proved that k-NN can be used in order to 

predict the brain balancing application. 

 

Keywords—Brain balancing, kNN, power spectral density, 3D 

EEG model. 

I. INTRODUCTION  

LASSIFICATION is the method of finding a set of 

models that describes and distinguishes data classes for 

the use of predicting the class of objects whose class labels are 

unknown [1], [2]. The k-Nearest Neighbor (kNN) is one of the 

classification techniques using machine learning algorithm. 

The kNN is known as simple but robust classifier and 

produced high performance results even for complex 

applications [3], [4]. The kNN uses a distance of features in a 

data set to determine the data belongs to which group. Close 

distance between features mean the features in same group 

while long distance between features mean that the features in 

the different group. Therefore kNN is a nonparametric 

procedure to determinate the appropriate group which close in 

Euclidian distance [5]. For example, kNN was used to classify 

epileptic and normal brain activities through EEG signals [6]. 

Another example, kNN was used to classify ten samples of 

EEG signals for individual biometric purposes [7] and various 

applications [8]-[11]. 

The electroencephalogram (EEG) is a total of different 

sinusoids with a wide frequency spectrum that is divided into 

different frequency bands such as alpha, delta, theta and beta 

bands [12]. An EEG spectral pattern is produced by several 
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spectral components. The power for each spectral power has 

the frequency bands: theta-θ (4–8 Hz), delta-δ (0.5–4 Hz), 

alpha-α (8–13 Hz) and beta-β (13–30 Hz) [13]. The EEG 

oscillations utilize these components and hypothesize it to 

produce the variation of cyclical in the excitability of neuronal 

assemblies [14], [15]. The highest frequency band and the 

lowest amplitude is beta while the lowest frequency band with 

the highest amplitude is delta. However, it is not limited to 

brain related diseases but also used for other applications such 

as Brain-Computer Interfacing (BCI) [16] and Intelligence 

Quotient (IQ) [17]. In EEG research, kNN is widely used as 

classifier in to order to classify the EEG signals.  

Human brain consists of two parts such as left hemisphere 

and right hemisphere. The language, arithmetic, analysis and 

speech are performed at left side of the brain. The right side of 

hemisphere will dominant in the cognitive tasks such as 

understanding, emoting, perceiving, remembering and 

thinking [18]-[21]. When the right and left brain are used for 

healthy lifestyle, human felt in happiness and good health 

[22]. Recently, many researchers increase their interest to find 

the methods for balancing of the brain [23]-[25]. The most 

popular methods are auditory and visual in brainwave 

entrainment that results more wave that similar to the 

frequency following response [24]-[26]. Other methods 

include Transcranial Magnetic/Electric Stimulation and 

traditional techniques such as massages, meditation and 

acupunctures [23]-[25]. From the review there were studies in 

brainwave balancing application but the number of published 

papers is too little.  

The objective of this paper is to do classification of power 

spectral density (PSD) features from three dimensional (3D) 

models for brainwave balancing application using kNN. 

II. METHODOLOGY 

The flow diagram of methodology has been shown in Fig. 

1. Initially, EEG signals were collected from 51 volunteers. 

Then, the EEG signals were pre-processed to produce clean 

signals and filtering into four band frequencies delta-δ band, 

theta-θ band, alpha-α band and beta-β band. Next, the 2D 

image called spectrogram was produced from clean EEG 

signals and 3D EEG model have been developed from EEG 

spectrogram using image processing techniques, then 

classification using k-NN technique. 
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Fig. 1 Flow diagram of methodology 

 

The experimental setup for EEG signal recording has been 

displayed in Fig. 2. There were two channels and one 

reference to two earlobes used to collect or record EEG signal. 

These channels connected to gold disk bipolar electrode that 

complied with 10/20 International System. The sampling rate 

is 256Hz. Channel 1 positive was connected to the right hand 

side (RHS), Fp2. The left hand side (LHS), Fp1 was connected 

to channel 2 positive. FpZ is the point at the center of forehead 

declared as reference point. MOBIlab was used in wireless 

EEG equipment and the EEG signal was monitored for five 

minutes. The Z-checker equipment was used to maintain the 

impedance to below than 5kΩ. The MATLAB and 

SIMULINK are used to process the data with the intelligent 

signal processing technique. 

A. Data Collection 

This research involved volunteers of samples which are 

students and lecturers. The data are collected from Biomedical 

Research and Development Laboratory for Human Potential, 

Faculty of Electrical Engineering, Universiti Teknologi 

MARA Malaysia (UiTM). All volunteers are healthy and not 

on any medication before the tests. These are performed and 

have fulfilled the requirement provided by the ethics 

committee from UiTM. Table I showed the number of sample 

for each index. 

 

 

Fig. 2 Experimental setup 
 

TABLE I  

BRAIN BALANCING GROUP WITH RANGE OF BALANCE SCORE 

Index level Percentage difference between left and right Samples 

Index level 3 40.0%-59.9% 9 

Index level 4 20.0%-39.9% 37 

Index level 5 0.0%-19.9% 5 

B. Data Preprocessing for Development 3D model  

The EEG signals were pre-processed to produce clean 

signals and filtering into four band frequencies delta-δ band, 

theta-θ band, alpha-α band and beta-β band using signal 

processing technique. Next, the two dimensional (2D) images 

or spectrogram was produced from clean EEG signals and 

three dimensional (3D) EEG model have been developed from 

EEG spectrogram using image processing techniques. These 

techniques have been explained previously in detail [27], [28]. 

Although after 3D model development, some features has 

been extracted from the model.  

C. Features Extraction  

Feature extraction is a process after 3D development 

because of the process involves simplifying the amount of 

resources required to describe a large set of data accurately. 

When performing analysis of complex data one of the major 

problems stems from the number of variables involved. 

Therefore, after development of 3D EEG model, the power 

spectral density (PSD) has been extracted as features. Only 

maximum PSD values are chosen as parameters. These 

features were analyzed using statistical analysis for 

recognizing the pattern in brain balancing application in [29]. 

D. Classification Algorithm 

In this paper, KNN algorithm is used for classification. The 

ratio used for training and testing process was 80:20. The ratio 

80:20 means that 80% of the data is selected for training 

process, while 20% of the data is selected for testing process.  

The outputs of classifiers were verified together with brain 

dominance questionnaire [30]. The best model for both 

classifiers is selected based on the highest accuracy. In kNN 

EEG signal recording 

(EEG raw data) 

Pre-processing 

(Artifact removal and Filtering – delta, theta, alpha and 

beta) 

Development of 2D images 

for each band 

Development 3D EEG models for 

each band 

Features Extraction 

(Power Spectral Density, PSD) 

Classification 

(kNN technique) 
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algorithm, the k variable is varied and the distance is fixed. 

The distance is used Euclidean. The k variable is varied from 

1 to 8. Equation (1) is implemented for Euclidean distance, 

 

∑
=

−=
n

k

jkikji XXXXd
1

2

, )()(
     (1)  

 

where; 

iX  or jX  are the training and testing data. 

i and j are the index of the data 

k is the counter for the length of the training data (n). 

In order to produce the best classification performance, the 

classifier must be tested for accuracy, sensitivity and 

specificity. Accuracy is defined as the closeness of the 

measurement to its value, sensitivity is described as the true 

positive that is correctly, and specificity indicates the true 

negative that is correctly identified. Accuracy, sensitivity and 

specificity can be calculated using (2) to (4), respectively. In 

order to make proper computation of accuracy, sensitivity and 

specificity in the classification process, s confusion matrix 

need to be built. 
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The confusion matrix for 2 x 2 matrices of the datasets is 

shown in Table II. 

 
TABLE II 

CONFUSION MATRIX FOR 2 X 2 MATRICES TARGET CLASS 

Output 
TP FP 

FN TN 

      

The error from classifier is calculated negative which is 

correctly by using the Mean-Square Error (MSE). The MSE is 

calculated using (5).  

 

∑ =
−=

N

i ii yy
N

MSE
1

2)ˆ(
1       (5) 

 

where N is the number of data point, iŷ  is the predicted value 

for case i, and iy  is the expected value for case i. 

III. RESULTS AND DISCUSSION 

3D EEG models were produced using optimization; 

gradient and mesh algorithms as depict in Figs. 3 (a)-(h). The 

3D signal is spectral of PSD and a different maximum PSD 

produced by each frequency band. Eight 3D signals for 

channels Fp1 and Fp2 are produced by EEG sample. The 3D 

EEG model produced as depicted in Table III. 

 

(a) 

 

(b) 

 

 

(c) 

 

 

(d) 

 

 

(e) 

 

 

(f) 

 

 

(g) 

 

 

(h) 

Fig. 3 3D EEG model for (a) Delta band from LF (b) Delta band from 

RF (c) Theta band from LF (d) Theta band from RF (e) Alpha band 

from LF (f) Alpha band from RF (g) Beta band from LF (h) Beta 

band from RF 
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TABLE III  

DATA SAMPLE PER INDEX 

Index level Samples 3D EEG model 

Index level 3 9 72 

Index level 4 37 296 

Index level 5 5 40 

 

The kNN algorithm consists of two stages. The first is 

training stage and the second is classification or testing stage. 

From Fig. 4, the highest accuracy is 100% for training and 

86.1% for testing. The k value was set to 8. The training and 

testing accuracy were consistent at k equal to 6, 7 and for 

testing.  

 

 

Fig. 4 kNN accuracy for different k value 

 

In order to support the classifier performance, the classifier 

is also tested for sensitivity and specificity, and the 

classification results obtained when k is varied from 1 to 8 are 

shown in Table IV. 

 
TABLE IV 

THE SUMMARY OF CLASSIFICATION ACCURACY, SENSITIVITY AND 

SPECIFICITY AT 80:20 TRAINING TO TESTING RATIO 

k Accuracy (%) Sensitivity (%) Specificity (%) 

1 88.46 89.09 91.61 

2 88.46 90.00 91.67 

3 75.93 89.23 90.53 

4 83.33 90.00 89.56 

5 74.07 89.33 90.26 

6 75.93 88.75 90.38 

7 75.93 89.41 90.50 

8 66.67 88.89 91.03 

 

Figs. 5 and 6 show result for 80:20 training to testing ratio; 

it is observed that at the highest classification accuracy rate 

(88.46%), the classification error is 0.14% (0.0014). And the 

total classification error is 2% (0.02) when the value of k is 

varied from 1 to 10. The classification error increases the 

value of classifier neighborhood k increase, as can be 

observed in the rapid increase in the classification error when 

k = 5 and above. 
 

 

Fig. 5 The classification accuracy versus k at 80:20 

 

 

Fig. 6 The classification error versus k at 80:20 

IV. CONCLUSION 

The kNN classifier is successfully described the behavior of 

the different brain balancing index with classification accuracy 

100% for training and 88.46% for testing. In the experiment, 

when the value of k increased, it will produce low percentage 

in classification. Actually, the correct classification for large 

samples will be high while the small samples will be low. The 

observation showed kNN was able to correctly classify 

features extraction (maximum PSD) from 3D EEG model with 

the highest success rate when k=1 and 2.  
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