Search results for: Analytical Hierarchy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 974

Search results for: Analytical Hierarchy

254 Airfoils Aerodynamic Efficiency Study in Heavy Rain via Two Phase Flow Approach

Authors: M. Ismail, Cao Yihua, Zhao Ming

Abstract:

Heavy rainfall greatly affects the aerodynamic performance of the aircraft. There are many accidents of aircraft caused by aerodynamic efficiency degradation by heavy rain. In this Paper we have studied the heavy rain effects on the aerodynamic efficiency of NACA 64-210 & NACA 0012 airfoils. For our analysis, CFD method and preprocessing grid generator are used as our main analytical tools, and the simulation of rain is accomplished via two phase flow approach-s Discrete Phase Model (DPM). Raindrops are assumed to be non-interacting, non-deforming, non-evaporating and non-spinning spheres. Both airfoil sections exhibited significant reduction in lift and increase in drag for a given lift condition in simulated rain. The most significant difference between these two airfoils was the sensitivity of the NACA 64-210 to liquid water content (LWC), while NACA 0012 performance losses in the rain environment is not a function of LWC . It is expected that the quantitative information gained in this paper will be useful to the operational airline industry and greater effort such as small scale and full scale flight tests should put in this direction to further improve aviation safety.

Keywords: airfoil, discrete phase modeling, heavy rain, Reynolds number

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3586
253 Multisymplectic Geometry and Noether Symmetries for the Field Theories and the Relativistic Mechanics

Authors: H. Loumi-Fergane, A. Belaidi

Abstract:

The problem of symmetries in field theory has been analyzed using geometric frameworks, such as the multisymplectic models by using in particular the multivector field formalism. In this paper, we expand the vector fields associated to infinitesimal symmetries which give rise to invariant quantities as Noether currents for classical field theories and relativistic mechanic using the multisymplectic geometry where the Poincaré-Cartan form has thus been greatly simplified using the Second Order Partial Differential Equation (SOPDE) for multi-vector fields verifying Euler equations. These symmetries have been classified naturally according to the construction of the fiber bundle used.  In this work, unlike other works using the analytical method, our geometric model has allowed us firstly to distinguish the angular moments of the gauge field obtained during different transformations while these moments are gathered in a single expression and are obtained during a rotation in the Minkowsky space. Secondly, no conditions are imposed on the Lagrangian of the mechanics with respect to its dependence in time and in qi, the currents obtained naturally from the transformations are respectively the energy and the momentum of the system.

Keywords: Field theories, relativistic mechanics, Lagrangian formalism, multisymplectic geometry, symmetries, Noether theorem, conservation laws.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1303
252 Multi-Walled Carbon Nanotubes/Polyacrylonitrile Composite as Novel Semi-Permeable Mixed Matrix Membrane in Reverse Osmosis Water Treatment Process

Authors: M. M. Doroodmand, Z.Tahvildar, M. H.Sheikhi

Abstract:

novel and simple method is introduced for rapid and highly efficient water treatment by reverse osmosis (RO) method using multi-walled carbon nanotubes (MWCNTs) / polyacrylonitrile (PAN) polymer as a flexible, highly efficient, reusable and semi-permeable mixed matrix membrane (MMM). For this purpose, MWCNTs were directly synthesized and on-line purified by chemical vapor deposition (CVD) process, followed by directing the MWCNT bundles towards an ultrasonic bath, in which PAN polymer was simultaneously suspended inside a solid porous silica support in water at temperature to ~70 οC. Fabrication process of MMM was finally completed by hot isostatic pressing (HIP) process. In accordance with the analytical figures of merit, the efficiency of fabricated MMM was ~97%. The rate of water treatment process was also evaluated to 6.35 L min-1. The results reveal that, the CNT-based MMM is suitable for rapid treatment of different forms of industrial, sea, drinking and well water samples.

Keywords: Mixed Matrix Membrane, Carbon Nanostructures, Chemical Vapour Deposition, Hot Isostatic Pressing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2154
251 Establishment of Kinetic Zone Diagrams via Simulated Linear Sweep Voltammograms for Soluble-Insoluble Systems

Authors: Imene Atek, Abed M. Affoune, Hubert Girault, Pekka Peljo

Abstract:

Due to the need for a rigorous mathematical model that can help to estimate kinetic properties for soluble-insoluble systems, through voltammetric experiments, a Nicholson Semi Analytical Approach was used in this work for modeling and prediction of theoretical linear sweep voltammetry responses for reversible, quasi reversible or irreversible electron transfer reactions. The redox system of interest is a one-step metal electrodeposition process. A rigorous analysis of simulated linear scan voltammetric responses following variation of dimensionless factors, the rate constant and charge transfer coefficients in a broad range was studied and presented in the form of the so called kinetic zones diagrams. These kinetic diagrams were divided into three kinetics zones. Interpreting these zones leads to empirical mathematical models which can allow the experimenter to determine electrodeposition reactions kinetics whatever the degree of reversibility. The validity of the obtained results was tested and an excellent experiment–theory agreement has been showed.

Keywords: Electrodeposition, kinetics diagrams, modeling, voltammetry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 752
250 Streamwise Conduction of Nanofluidic Flow in Microchannels

Authors: Yew Mun Hung, Ching Sze Lim, Tiew Wei Ting, Ningqun Guo

Abstract:

The effect of streamwise conduction on the thermal characteristics of forced convection for nanofluidic flow in rectangular microchannel heat sinks under isothermal wall has been investigated. By applying the fin approach, models with and without streamwise conduction term in the energy equation were developed for hydrodynamically and thermally fully-developed flow. These two models were solved to obtain closed form analytical solutions for the nanofluid and solid wall temperature distributions and the analysis emphasized details of the variations induced by the streamwise conduction on the nanofluid heat transport characteristics. The effects of the Peclet number, nanoparticle volume fraction, thermal conductivity ratio on the thermal characteristics of forced convection in microchannel heat sinks are analyzed. Due to the anomalous increase in the effective thermal conductivity of nanofluid compared to its base fluid, the effect of streamwise conduction is expected to be more significant. This study reveals the significance of the effect of streamwise conduction under certain conditions of which the streamwise conduction should not be neglected in the forced convective heat transfer analysis of microchannel heat sinks.

Keywords: fin approach, microchannel heat sink, nanofluid, streamwise conduction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1701
249 Applying the Crystal Model Approach on Light Nuclei for Calculating Radii and Density Distribution

Authors: A. Amar

Abstract:

A new model namely, the crystal model, has been modified to calculate radius and density distribution of light nuclei up to 8Be. The crystal model has been modified according to solid state physics which uses the analogy between nucleon distribution and atoms distribution in the crystal. The model has analytical analysis to calculate the radius where the density distribution of light nuclei has been obtained from the analogy of crystal lattice. The distribution of nucleons over crystal has been discussed in general form. The equation used to calculate binding energy was taken from the solid-state model of repulsive and attractive force. The numbers of the protons were taken to control repulsive force where the atomic number was responsible for the attractive force. The parameter has been calculated from the crystal model was found to be proportional to the radius of the nucleus. The density distribution of light nuclei was taken as a summation of two clusters distribution as in 6Li=alpha+deuteron configuration. A test has been done on the data obtained for radius and density distribution using double folding for d+6,7Li with M3Y nucleon-nucleon interaction. Good agreement has been obtained for both radius and density distribution of light nuclei. The model failed to calculate the radius of 9Be, so modifications should be done to overcome discrepancy.

Keywords: nuclear lattice, crystal model, light nuclei, nuclear density distributions

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 361
248 Numerical Studies on the Performance of Finned-Tube Heat Exchanger

Authors: Praveen Kumar S P, Bong-Su Sin, Kwon-Hee Lee

Abstract:

Finned-tube heat exchangers are predominantly used in space conditioning systems, as well as other applications requiring heat exchange between two fluids. The design of finned-tube heat exchangers requires the selection of over a dozen design parameters by the designer such as tube pitch, tube diameter, tube thickness, etc… Finned-tube heat exchangers are common devices; however, their performance characteristics are complicated. In this paper numerical studies have been carried out to analyze the performances of finned tube heat exchanger (without fins considered for experimental purpose) by predicting the characteristics of temperature difference and pressure drop. In this study, a design considering 5 design variables and also maximizing the temperature difference and pressure drop was suggested by applying DOE. During this process, L18 orthogonal array was adopted. Parametric analytical studies have been carried out using ANOVA to determine the relative importance of each variable with respect to the temperature difference and the pressure drop. Following the results, the final design was suggested by predicting the optimum design therefore confirming the optimized condition.

Keywords: Heat Exchanger, Fluid Analysis, Heat Transfer, Design of Experiment (DOE), Analysis of Variance (ANOVA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2605
247 Experimental Modal Analysis of Reinforced Concrete Square Slabs

Authors: M. S. Ahmed, F. A. Mohammad

Abstract:

The aim of this paper is to perform experimental modal analysis (EMA) of reinforced concrete (RC) square slabs. EMA is the process of determining the modal parameters (Natural Frequencies, damping factors, modal vectors) of a structure from a set of frequency response functions FRFs (curve fitting). Although, experimental modal analysis (or modal testing) has grown steadily in popularity since the advent of the digital FFT spectrum analyzer in the early 1970’s, studying all types of members and materials using such method have not yet been well documented. Therefore, in this work, experimental tests were conducted on RC square slab specimens of dimensions 600mm x 600mmx 40mm. Experimental analysis was based on freely supported boundary condition. Moreover, impact testing as a fast and economical means of finding the modes of vibration of a structure was used during the experiments. In addition, Pico Scope 6 device and MATLAB software were used to acquire data, analyze and plot Frequency Response Function (FRF). The experimental natural frequencies which were extracted from measurements exhibit good agreement with analytical predictions. It is showed that EMA method can be usefully employed to investigate the dynamic behavior of RC slabs.

Keywords: Natural frequencies, Mode shapes, Modal analysis, RC slabs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2582
246 The Comparative Investigation and Calculation of Thermo-Neutronic Parameters on Two Gens II and III Nuclear Reactors with Same Powers

Authors: Mousavi Shirazi, Seyed Alireza, Rastayesh, Sima

Abstract:

Whereas in the third generation nuclear reactors, dimensions of core and also the kind of coolant and enrichment percent of fuel have significantly changed than the second generation, therefore in this article the aim is based on a comparative investigation between two same power reactors of second and third generations, that the neutronic parameters of both reactors such as: K∞, Keff and its details and thermal hydraulic parameters such as: power density, specific power, volumetric heat rate, released power per fuel volume unit, volume and mass of clad and fuel (consisting fissile and fertile fuels), be calculated and compared together. By this comparing the efficiency and modification of third generation nuclear reactors than second generation which have same power can be distinguished. In order to calculate the cited parameters, some information such as: core dimensions, the pitch of lattice, the fuel matter, the percent of enrichment and the kind of coolant are used. For calculating the neutronic parameters, a neutronic program entitled: SIXFAC and also related formulas have been used. Meantime for calculating the thermal hydraulic and other parameters, analytical method and related formulas have been applied.

Keywords: Nuclear reactor, second generation, third generation, thermo-neutronics parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1583
245 Data Envelopment Analysis with Partially Perfect Objects

Authors: Alexander Y. Vaninsky

Abstract:

This paper presents a simplified version of Data Envelopment Analysis (DEA) - a conventional approach to evaluating the performance and ranking of competitive objects characterized by two groups of factors acting in opposite directions: inputs and outputs. DEA with a Perfect Object (DEA PO) augments the group of actual objects with a virtual Perfect Object - the one having greatest outputs and smallest inputs. It allows for obtaining an explicit analytical solution and making a step to an absolute efficiency. This paper develops this approach further and introduces a DEA model with Partially Perfect Objects. DEA PPO consecutively eliminates the smallest relative inputs or greatest relative outputs, and applies DEA PO to the reduced collections of indicators. The partial efficiency scores are combined to get the weighted efficiency score. The computational scheme remains simple, like that of DEA PO, but the advantage of the DEA PPO is taking into account all of the inputs and outputs for each actual object. Firm evaluation is considered as an example.

Keywords: Data Envelopment Analysis, Perfect object, Partially perfect object, Partial efficiency, Explicit solution, Simplified algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1657
244 Effect of Damping on Performance of Magnetostrictive Vibration Energy Harvester

Authors: Mojtaba Ghodsi, Hamidreza Ziaifar, Morteza Mohammadzaheri, Payam Soltani

Abstract:

This article presents an analytical model to estimate the harvested power from a Magnetostrictive cantilevered beam with tip excitation. Furthermore, the effects of internal and external damping on harvested power are investigated. The magnetostrictive material in this harvester is Galfenol. In comparison to other popular smart materials like Terfenol-D, Galfenol has higher strength and machinability. In this article, first, a mechanical model of the Euler-Bernoulli beam is employed to calculate the deflection of the harvester. Then, the magneto-mechanical equation of Galfenol is combined with Faraday's law to calculate the generated voltage of the Magnetostrictive cantilevered beam harvester. Finally, the beam model is incorporated in the aforementioned combination. The results show that a 30×8.5×1 mm Galfenol cantilever beam harvester with 80 turn pickup coil can generate up to 3.7 mV and 9 mW. Furthermore, sensitivity analysis made by Response Surface Method (RSM) shows that the harvested power is only sensitive to the internal damping coefficient.

Keywords: Internal damping coefficient, external damping coefficient, Euler-Bernoulli, energy harvester, Galfenol, magnetostrictive, response surface method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 702
243 Efficiency of Post-Tensioning Method for Seismic Retrofitting of Pre-Cast Cylindrical Concrete Reservoirs

Authors: M.E.Karbaschi, R.Goudarzizadeh, N.Hedayat

Abstract:

Cylindrical concrete reservoirs are appropriate choice for storing liquids as water, oil and etc. By using of the pre-cast concrete reservoirs instead of the in-situ constructed reservoirs, the speed and precision of the construction would considerably increase. In this construction method, wall and roof panels would make in factory with high quality materials and precise controlling. Then, pre-cast wall and roof panels would carry out to the construction site for assembling. This method has a few faults such as: the existing weeks in connection of wall panels together and wall panels to foundation. Therefore, these have to be resisted under applied loads such as seismic load. One of the innovative methods which was successfully applied for seismic retrofitting of numerous pre-cast cylindrical water reservoirs in New Zealand, using of the high tensile cables around the reservoirs and post-tensioning them. In this paper, analytical modeling of wall and roof panels and post-tensioned cables are carried out with finite element method and the effect of height to diameter ratio, post-tensioning force value, liquid level in reservoir, installing position of tendons on seismic response of reservoirs are investigated.

Keywords: Seismic Retrofit, Pre-Cast, Concrete Reservoir, Post-Tensioning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1982
242 Optimum Design of Tall Tube-Type Building: An Approach to Structural Height Premium

Authors: Ali Kheyroddin, Niloufar Mashhadiali, Frazaneh Kheyroddin

Abstract:

In last decades, tubular systems employed for tall buildings were efficient structural systems. However, increasing the height of a building leads to an increase in structural material corresponding to the loads imposed by lateral loads. Based on this approach, new structural systems are emerging to provide strength and stiffness with the minimum premium for height. In this research, selected tube-type structural systems such as framed tubes, braced tubes, diagrids and hexagrid systems were applied as a single tube, tubular structures combined with braced core and outrigger trusses on a set of 48, 72, and 96-story, respectively, to improve integrated structural systems. This paper investigated structural material consumption by model structures focusing on the premium for height. Compared analytical results indicated that as the height of the building increased, combination of the structural systems caused the framed tube, hexagrid and braced tube system to pay fewer premiums to material tonnage while in diagrid system, combining the structural system reduced insignificantly the steel material consumption.

Keywords: Braced tube, diagrid, framed tube, hexagrid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1078
241 Stress and Strain Analysis of Notched Bodies Subject to Non-Proportional Loadings

Authors: A. Ince

Abstract:

In this paper, an analytical simplified method for calculating elasto-plastic stresses strains of notched bodies subject to non-proportional loading paths is discussed. The method was based on the Neuber notch correction, which relates the incremental elastic and elastic-plastic strain energy densities at the notch root and the material constitutive relationship. The validity of the method was presented by comparing computed results of the proposed model against finite element numerical data of notched shaft. The comparison showed that the model estimated notch-root elasto-plastic stresses strains with good accuracy using linear-elastic stresses. The prosed model provides more efficient and simple analysis method preferable to expensive experimental component tests and more complex and time consuming incremental non-linear FE analysis. The model is particularly suitable to perform fatigue life and fatigue damage estimates of notched components subjected to nonproportional loading paths.

Keywords: Elasto-plastic, stress-strain, notch analysis, nonprortional loadings, cyclic plasticity, fatigue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2510
240 Effects of Using Gusset Plate Stiffeners on the Seismic Performance of Concentrically Braced Frame

Authors: B. Mohebi, N. Asadi, F. Kazemi

Abstract:

Inelastic deformation of the brace in Special Concentrically Braced Frame (SCBF) creates inelastic damages on gusset plate connections such as buckling at edges. In this study, to improve the seismic performance of SCBFs connections, an analytical study was undertaken. To improve the gusset plate connection, this study proposes using ‎edge’s stiffeners in both sides of gusset plate.‎ For this purpose, in order to examine edge’s stiffeners effect on gusset plate connections, two groups of modeling with and without considering edge’s stiffener and different types of braces were modeled using ABAQUS software. The results show that considering the edge’s stiffener reduces the equivalent plastic strain values at a connection region of gusset plate with beam and column, which can improve the seismic performance of gusset plate. Furthermore, considering the edge’s stiffeners significantly decreases the strain concentration at regions where gusset plates have been connected to beam and column. Moreover, considering 2tpl distance causes reduction in the plastic strain.

Keywords: Special concentrically braced frame, gusset plate, edge’s stiffener, seismic performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 676
239 Predicting Crack Initiation Due to Ratchetting in Rail Heads Using Critical Element Analysis

Authors: I. U. Wickramasinghe, D. J. Hargreaves, D. V. De Pellegrin

Abstract:

This paper presents a strategy to predict the lifetime of rails subjected to large rolling contact loads that induce ratchetting strains in the rail head. A critical element concept is used to calculate the number of loading cycles needed for crack initiation to occur in the rail head surface. In this technique the finite element method (FEM) is used to determine the maximum equivalent ratchetting strain per load cycle, which is calculated by combining longitudinal and shear stains in the critical element. This technique builds on a previously developed critical plane concept that has been used to calculate the number of cycles to crack initiation in rolling contact fatigue under ratchetting failure conditions. The critical element concept simplifies the analytical difficulties of critical plane analysis. Finite element analysis (FEA) is used to identify the critical element in the mesh, and then the strain values of the critical element are used to calculate the ratchetting rate analytically. Finally, a ratchetting criterion is used to calculate the number of cycles to crack initiation from the ratchetting rate calculated.

Keywords: Critical element analysis, finite element modeling (FEM), wheel/rail contact.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2891
238 Qanat (Subterranean Canal) Role in Traditional Cities and Settlements Formation of Hot-Arid Regions of Iran

Authors: Karim Shiraazi, Mahyar Asheghi Milani, Alireza Sadeghi, Eram Azami, Ahadollah Azami

Abstract:

A passive system "Qanat" is collection of some underground wells. A mother-well was dug in a place far from the city where they could reach to the water table maybe 100 meters underground, they dug other wells to direct water toward the city, with minimum possible gradient. Using the slope of the earth they could bring water close to the surface in the city. The source of water or the appearance of Qanat, land slope and the ownership lines are the important and effective factors in the formation of routes and the segment division of lands to the extent that making use of Qanat as the techniques of extracting underground waters creates a channel of routes with an organic order and hierarchy coinciding the slope of land and it also guides the Qanat waters in the tradition texture of salt desert and border provinces of it. Qanats are excavated in a specified distinction from each other. The quantity of water provided by Qanats depends on the kind of land, distance from mountain, geographical situation of them and the rate of water supply from the underground land. The rate of underground waters, possibility of Qanat excavation, number of Qanats and rate of their water supply from one hand and the quantity of cultivable fertile lands from the other hand are the important natural factors making the size of cities. In the same manner the cities with several Qanats have multi central textures. The location of cities is in direct relation with land quality, soil fertility and possibility of using underground water by excavating Qanats. Observing the allowable distance for Qanat watering is a determining factor for distance between villages and cities. Topography, land slope, soil quality, watering system, ownership, kind of cultivation, etc. are the effective factors in directing Qanats for excavation and guiding water toward the cultivable lands and it also causes the formation of different textures in land division of farming provinces. Several divisions such as orderly and wide, inorderly, thin and long, comb like, etc. are the introduction to organic order. And at the same time they are complete coincidence with environmental conditions in the typical development of ecological architecture and planning in the traditional cities and settlements order.

Keywords: Qanat, Settlement Formation, Hot-Arid Region, Sustainable Development

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1877
237 Evaluation of Antioxidant Activities of Cabbage (Brassica oleracea L. var. capitata L.)

Authors: Rutanachai Thaipratum

Abstract:

At present, it is widely-known that free radicals are the causes of illness such as cancers, coronary heart disease, Alzheimer’s disease and aging. One method of protection from free radical is the consumption of antioxidant-containing foods or herbs. Several analytical methods have been used for qualitative and quantitative determination of antioxidants. This project aimed to evaluate antioxidant activity of ethanolic and aqueous extracts from cabbage (Brassicca oleracea L. var. capitata L.) measured by DPPH and Hydroxyl radical scavenging method. The results show that averaged antioxidant activity measured in ethanolic extract (µmol Ascorbic acid equivalent/g fresh mass) were 7.316 ± 0.715 and 4.66 ± 1.029 as determined by DPPH and Hydroxyl radical scavenging activity assays respectively. Averaged antioxidant activity measured in aqueous extract (µmol Ascorbic acid equivalent/g fresh mass) were 15.141 ± 2.092 and 4.955 ± 1.975 as determined by DPPH and Hydroxyl radical scavenging activity assays respectively.

Keywords: Free radical, antioxidant, cabbage, Brassicca oleracea L. var. capitata L.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2233
236 Performance of Partially Covered N Number of Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) Series Connected Water Heating System

Authors: Rohit Tripathi, Sumit Tiwari, G. N. Tiwari

Abstract:

In present study, an approach is adopted where photovoltaic thermal flat plate collector is integrated with compound parabolic concentrator. Analytical expression of temperature dependent electrical efficiency of N number of partially covered Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) water collector connected in series has been derived with the help of basic thermal energy balance equations. Analysis has been carried for winter weather condition at Delhi location, India. Energy and exergy performance of N - partially covered Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) Water collector system has been compared for two cases: (i) 25% area of water collector covered by PV module, (ii) 75% area of water collector covered by PV module. It is observed that case (i) has been best suited for thermal performance and case (ii) for electrical energy as well as overall exergy.

Keywords: Compound parabolic concentrator, Energy, Photovoltaic thermal, Temperature dependent electrical efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1581
235 Effective Design Factors for Bicycle-Friendly Streets

Authors: Z. Asadi-Shekari, M. Moeinaddini, M. Zaly Shah, A. Hamzah

Abstract:

Bicycle Level of Service (BLOS) is a measure for evaluating street conditions for cyclists. Currently, various methods are proposed for BLOS. These analytical methods however have some drawbacks: they usually assume cyclists as users that can share street facilities with motorized vehicles, it is not easy to link them to design process and they are not easy to follow. In addition, they only support a narrow range of cycling facilities and may not be applicable for all situations. Along this, the current paper introduces various effective design factors for bicycle-friendly streets. This study considers cyclists as users of streets who have special needs and facilities. Therefore, the key factors that influence BLOS based on different cycling facilities that are proposed by developed guidelines and literature are identified. The combination of these factors presents a complete set of effective design factors for bicycle-friendly streets. In addition, the weight of each factor in existing BLOS models is estimated and these effective factors are ranked based on these weights. These factors and their weights can be used in further studies to propose special bicycle-friendly street design model.

Keywords: Bicycle level of service, bicycle-friendly streets, cycling facilities, rating system, urban streets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2233
234 Reliability Analysis of P-I Diagram Formula for RC Column Subjected to Blast Load

Authors: Masoud Abedini, Azrul A. Mutalib, Shahrizan Baharom, Hong Hao

Abstract:

This study was conducted published to investigate there liability of the equation pressure-impulse (PI) reinforced concrete column inprevious studies. Equation involves three different levels of damage criteria known as D =0. 2, D =0. 5 and D =0. 8.The damage criteria known as a minor when 0-0.2, 0.2-0.5is known as moderate damage, high damage known as 0.5-0.8, and 0.8-1 of the structure is considered a failure. In this study, two types of reliability analyzes conducted. First, using pressure-impulse equation with different parameters. The parameters involved are the concrete strength, depth, width, and height column, the ratio of longitudinal reinforcement and transverse reinforcement ratio. In the first analysis of the reliability of this new equation is derived to improve the previous equations. The second reliability analysis involves three types of columns used to derive the PI curve diagram using the derived equation to compare with the equation derived from other researchers and graph minimum standoff versus weapon yield Federal Emergency Management Agency (FEMA). The results showed that the derived equation is more accurate with FEMA standards than previous researchers.

Keywords: Blast load, RC column, P-I curve, Analytical formulae, Standard FEMA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2867
233 Effect of U-Turn in Reinforced Concrete Dog-Legged Stair Slabs

Authors: Abdul Baqi, Zaid Mohammad

Abstract:

Reinforced concrete stair slabs with mid landings i.e. Dog-legged shaped are conventionally designed as per specifications of standard codes of practices which guide about the effective span according to the varying support conditions. Presently, the behavior of such slabs has been investigated using Finite Element method. A single flight stair slab with landings on both sides and supported at ends on wall, and a multi flight stair slab with landings and six different support arrangements have been analyzed. The results obtained for stresses, strains and deflections are used to describe the behavior of such stair slabs, including locations of critical moments and deflections. Values of critical moments obtained by F.E. analysis have also have been compared with that obtained from conventional analysis. Analytical results show that the moments are also critical near the kinks i.e. junction of mid-landing and inclined waist slab. This change in the behavior of dog-legged stair slab may be due to continuity of the material in transverse direction in two landings adjoining the waist slab, hence additional stiffness achieved. This change in the behavior is generally not taken care of in conventional method of design.

Keywords: Dog-legged, Stair slab, F.E. Analysis, Landing, Reinforced concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4506
232 Time-Dependent Behavior of Damaged Reinforced Concrete Shear Walls Strengthened with Composite Plates Having Variable Fibers Spacing

Authors: R. Yeghnem, L. Boulefrakh, S. A. Meftah, A. Tounsi, E. A. Adda Bedia

Abstract:

In this study, the time-dependent behavior of damaged reinforced concrete shear wall structures strengthened with composite plates having variable fibers spacing was investigated to analyze their seismic response. In the analytical formulation, the adherent and the adhesive layers are all modeled as shear walls, using the mixed Finite Element Method (FEM). The anisotropic damage model is adopted to describe the damage extent of the Reinforced Concrete shear walls. The phenomenon of creep and shrinkage of concrete has been determined by Eurocode 2. Large earthquakes recorded in Algeria (El-Asnam and Boumerdes) have been tested to demonstrate the accuracy of the proposed method. Numerical results are obtained for non-uniform distributions of carbon fibers in epoxy matrices. The effects of damage extent and the delay mechanism creep and shrinkage of concrete are highlighted. Prospects are being studied.

Keywords: RC shear wall structures, composite plates, creep and shrinkage, damaged reinforced concrete structures, finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1632
231 Pressure Losses on Realistic Geometry of Tracheobronchial Tree

Authors: Michaela Chovancova, Jakub Elcner

Abstract:

Real bronchial tree is very complicated piping system. Analysis of flow and pressure losses in this system is very difficult. Due to the complex geometry and the very small size in the lower generations is examination by CFD possible only in the central part of bronchial tree. For specify the pressure losses of lower generations is necessary to provide a mathematical equation. Determination of mathematical formulas for calculation of pressure losses in the real lungs is time consuming and inefficient process due to its complexity and diversity. For these calculations is necessary to slightly simplify the geometry of lungs (same cross-section over the length of individual generation) or use one of the idealized models of lungs (Horsfield, Weibel). The article compares the values of pressure losses obtained from CFD simulation of air flow in the central part of the real bronchial tree with the values calculated in a slightly simplified real lungs by using a mathematical relationship derived from the Bernoulli and continuity equations. The aim of the article is to analyse the accuracy of the analytical method and its possibility of use for the calculation of pressure losses in lower generations, which is difficult to solve by numerical method due to the small geometry.

Keywords: Pressure gradient, airways resistance, real geometry of bronchial tree, breathing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1836
230 Capacity of Anchors in Structural Connections

Authors: T. Cornelius, G. Secilmis

Abstract:

When dealing with safety in structures, the connections between structural components play an important role. Robustness of a structure as a whole depends both on the load- bearing capacity of the structural component and on the structures capacity to resist total failure, even though a local failure occurs in a component or a connection between components. To avoid progressive collapse it is necessary to be able to carry out a design for connections. A connection may be executed with anchors to withstand local failure of the connection in structures built with prefabricated components. For the design of these anchors, a model is developed for connections in structures performed in prefabricated autoclaved aerated concrete components. The design model takes into account the effect of anchors placed close to the edge, which may result in splitting failure. Further the model is developed to consider the effect of reinforcement diameter and anchor depth. The model is analytical and theoretically derived assuming a static equilibrium stress distribution along the anchor. The theory is compared to laboratory test, including the relevant parameters and the model is refined and theoretically argued analyzing the observed test results. The method presented can be used to improve safety in structures or even optimize the design of the connections

Keywords: Robustness, anchors, connections, aircrete, prefabricated components.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1979
229 Investigating the Thermal Characteristics of Reclaimed Solid Waste from a Landfill Site Using Thermogravimetry

Authors: S. M. Al-Salem, G.A. Leeke, H. J. Karam, R. Al-Enzi, A. T. Al-Dhafeeri, J. Wang

Abstract:

Thermogravimetry has been popularized as a thermal characterization technique since the 1950s. It aims at investigating the weight loss against both reaction time and temperature, whilst being able to characterize the evolved gases from the volatile components of the organic material being tested using an appropriate hyphenated analytical technique. In an effort to characterize and identify the reclaimed waste from an unsanitary landfill site, this approach was initiated. Solid waste (SW) reclaimed from an active landfill site in the State of Kuwait was collected and prepared for characterization in accordance with international protocols. The SW was segregated and its major components were identified after washing and air drying. Shredding and cryomilling was conducted on the plastic solid waste (PSW) component to yield a material that is representative for further testing and characterization. The material was subjected to five heating rates (b) with minimal repeatable weight for high accuracy thermogravimetric analysis (TGA) following the recommendation of the International Confederation for Thermal Analysis and Calorimetry (ICTAC). The TGA yielded thermograms that showed an off-set from typical behavior of commercial grade resin which was attributed to contact of material with soil and thermal/photo-degradation.

Keywords: Polymer, TGA, Pollution, Landfill, Waste, Plastic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 645
228 An Analytical Study of FRP-Concrete Bridge Superstructures

Authors: Wael I. Alnahhal

Abstract:

It is a major challenge to build a bridge superstructure that has long-term durability and low maintenance requirements. A solution to this challenge may be to use new materials or to implement new structural systems. Fiber Reinforced Polymer (FRP) composites have continued to play an important role in solving some of persistent problems in infrastructure applications because of its high specific strength, light weight, and durability. In this study, the concept of the hybrid FRP-concrete structural systems is applied to a bridge superstructure. The hybrid FRP-concrete bridge superstructure is intended to have durable, structurally sound, and cost effective hybrid system that will take full advantage of the inherent properties of both FRP materials and concrete. In this study, two hybrid FRP-concrete bridge systems were investigated. The first system consists of trapezoidal cell units forming a bridge superstructure. The second one is formed by arch cells. The two systems rely on using cellular components to form the core of the bridge superstructure, and an outer shell to warp around those cells to form the integral unit of the bridge. Both systems were investigated analytically by using finite element (FE) analysis. From the rigorous FE studies, it was concluded that first system is more efficient than the second.

Keywords: Bridge superstructure, hybrid system, fiber reinforced polymer, finite element analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648
227 Thermal Load Calculations of Multilayered Walls

Authors: Bashir M. Suleiman

Abstract:

Thermal load calculations have been performed for multi-layered walls that are composed of three different parts; a common (sand and cement) plaster, and two types of locally produced soft and hard bricks. The masonry construction of these layered walls was based on concrete-backed stone masonry made of limestone bricks joined by mortar. These multilayered walls are forming the outer walls of the building envelope of a typical Libyan house. Based on the periodic seasonal weather conditions, within the Libyan cost region during summer and winter, measured thermal conductivity values were used to implement such seasonal variation of heat flow and the temperature variations through the walls. The experimental measured thermal conductivity values were obtained using the Hot Disk technique. The estimation of the thermal resistance of the wall layers ( R-values) is based on measurements and calculations. The numerical calculations were done using a simplified analytical model that considers two different wall constructions which are characteristics of such houses. According to the obtained results, the R-values were quite low and therefore, several suggestions have been proposed to improve the thermal loading performance that will lead to a reasonable human comfort and reduce energy consumption.

Keywords: Thermal loading, multilayered walls, Libyan bricks, thermal resistance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2285
226 Enhancing the Effectiveness of Air Defense Systems through Simulation Analysis

Authors: F. Felipe

Abstract:

Air Defense Systems contain high-value assets that are expected to fulfill their mission for several years - in many cases, even decades - while operating in a fast-changing, technology-driven environment. Thus, it is paramount that decision-makers can assess how effective an Air Defense System is in the face of new developing threats, as well as to identify the bottlenecks that could jeopardize the security of the airspace of a country. Given the broad extent of activities and the great variety of assets necessary to achieve the strategic objectives, a systems approach was taken in order to delineate the core requirements and the physical architecture of an Air Defense System. Then, value-focused thinking helped in the definition of the measures of effectiveness. Furthermore, analytical methods were applied to create a formal structure that preliminarily assesses such measures. To validate the proposed methodology, a powerful simulation was also used to determine the measures of effectiveness, now in more complex environments that incorporate both uncertainty and multiple interactions of the entities. The results regarding the validity of this methodology suggest that the approach can support decisions aimed at enhancing the capabilities of Air Defense Systems. In conclusion, this paper sheds some light on how consolidated approaches of Systems Engineering and Operations Research can be used as valid techniques for solving problems regarding a complex and yet vital matter.

Keywords: Air defense, effectiveness, system, simulation, decision-support.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 352
225 The Role of Paper in the Copy Identification of Safavid Era Shahnamehs of Tabriz Doctrine

Authors: Ashrafosadat Mousavi Lar, Elahe Moravej

Abstract:

To investigate and explain the history of each copy, we must refer to its past because it highlights parts of the civilization of people among which this copy has been codified. In this paper, eight Ferdowsi’s Shahnameh of Safavid era of Tabriz doctrine available in Iranian libraries and museums are studied. Undoubtedly, it can be said that Ferdowsi’s Shahnameh is one of the most important books that has been transcribed many times in different eras because it explains the Iranian champions’ prowess and it includes the history of Iran from Pishdadian to Sasanian dynasty. In addition, it has been attractive for governors and artists. The research methodology of this article is based on the analytical-descriptive arguments. The research hypothesis is based on papers used in Shahnameh writing in Safavid era of Tabriz doctrine were mostly Isfahanian papers existed. At that time, Isfahanian paper was unique in terms of quality, clarity, flatness of the sheets, volume, shape, softness and elegance, strength, and smoothness. This paper was mostly used to prepare the courtier and exquisite copies. This shows that the prepared copies in Safavid era of Tabriz doctrine were very important because the artists and people who ordered and were out of the court have ordered Isfahanian paper for writing their books.

Keywords: Shahnameh, Safavid era, Tabriz doctrine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 737