
  
Abstract—This paper presents a simplified version of Data 

Envelopment Analysis (DEA) - a conventional approach to 
evaluating the performance and ranking of competitive objects 
characterized by two groups of factors acting in opposite directions: 
inputs and outputs. DEA with a Perfect Object (DEA PO) augments 
the group of actual objects with a virtual Perfect Object - the one 
having greatest outputs and smallest inputs. It allows for obtaining an 
explicit analytical solution and making a step to an absolute 
efficiency. This paper develops this approach further and introduces a 
DEA model with Partially Perfect Objects. DEA PPO consecutively 
eliminates the smallest relative inputs or greatest relative outputs, and 
applies DEA PO to the reduced collections of indicators. The partial 
efficiency scores are combined to get the weighted efficiency score. 
The computational scheme remains simple, like that of DEA PO, but 
the advantage of the DEA PPO is taking into account all of the inputs 
and outputs for each actual object. Firm evaluation is considered as 
an example.  

 
Keywords—Data Envelopment Analysis, Perfect object, Partially 

perfect object, Partial efficiency, Explicit solution, Simplified 
algorithm.  

I. INTRODUCTION 

ATA Envelopment Analysis (DEA) was developed in 
publications [1], [2]; its comprehensive description may 

be found  in [3] and on the website http://deazone.com/. DEA 
estimates relative efficiencies of objects in a group, referred to 
as Decision - Making Units (DMUs) that use inputs 

r)1,...,j,(X j ==X  to produce outputs s)1,...,i,(Yi ==Y . 

DEA combines all indicators into a single efficiency score 
scaled between 0 and 1. Efficient objects receive the score 
equal 1, inefficient objects, less than 1. To measure the 
efficiency, DEA uses the efficiency ratio suggested in [4]: 
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where u=(u1,...,us) and v=(v1,...,vr) are non-negative weights 
assigned to outputs and inputs, respectively.  

DEA is a non-parametric method; it does not require a 
priorifunctional relationship between inputs and outputs and 

 
A. Y. Vaninsky is with the Hostos Community College of The City 

University of New York, Bronx, NY 10451, USA (phone: 1-718-319-7930; 
fax: 1-718-518-6706; e-mail: avaninsky@ hostos.cuny.edu).  

the efficiency score. The main advantage of DEA is its ability 
to assign values to u and v objectively by solving a series of 
linear programming problems. To calculate an efficiency 
score, DEA allows each DMU to assign its own weight 
coefficients to each input and output favorably. However, the 
ability of a given DMU to achieve maximal possible 
efficiency score is restricted by the requirement that with the 
weight coefficients assigned by any given DMU to itself, no 
one other DMU in the group received an efficiency score 
greater than one. This means that a poorly performing DMU 
cannot achieve a high efficiency score for itself by playing 
with the weight coefficients, since an object that performs 
really well would have received the efficiency score greater 
than one.   

The basic efficiency ratio (1) therefore, generates the 
following series of optimization problems:  

For each DMUi, i =1,...,n, find non-negative vectors 
ui=(ui1,...uis) and vi=(vi1,...vir) such that: 
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subject to 
 

1≤jE with all ui=(ui1,...,uis), vi=(vi1,...,vir), i,j=1,…,n.     (3) 

 
The DEA model given by (2) and (3) is referred to as the 

ratio DEA model. 
In the envelope DEA model, the set of optimization 

problems is changed for a set of equivalent linear 
programming ones:  

For each DMUi, i =1,...,n, find a non-negative vector 
λi=(λi1,λi2,…,λin) and a scalar iω  such that 
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where 
jkX and 

jpY  stand for the k-th input and p-th output of a 

DMUj, respectively. 
The LP-problem stated by (4) has the following 

interpretation: for each DMUi, DEA-algorithm designs a 
virtual object that produces at least the same outputs as 
DMUiwhile using at most iω - share of its inputs. This virtual 

DMU is constructed of λi - multiples of all DMUs, including 
the DMUi itself. This LP-problem has at least one feasible 
solution: 

 

iω = 1, λii = 1, λij= 0 for ji≠        (5) 
 
which means that a virtual DMU is the same as the DMUi 
itself. For some DMUs this is the only solution, meaning that 
their performance cannot be improved by simulating peer 
DMUs. For other DMUs in the group, better solutions exist 
with a smaller value of iω <1. Such DMUs may perform 
better by acquiring the properties of their peers. The minimal 
value of iω given by LP-problem (4) and efficiency score 
Eicorresponding to the problem (2), (3) are equal: 
 

ii minEmax ω=         (6) 

 
DMUs with Ei = 1 are called efficient, otherwise, 

inefficient. An input-minimization DEA with constant returns 
to scale (IM CRS) is a natural extension of an intuitively clear 
formula (1) and possesses some useful properties. First, the 
efficiency scores remain the same if the input-minimization 
model is changed for the output - maximization one (OM 
CRS). Thus, a choice of a basic model becomes unambiguous. 
Second, the efficiency scores preserve their values if one or 
several inputs or outputs are changed proportionally. This is 
an important issue because some indicators may have units of 
measurement.  

The conventional DEA has, however, at least three 
weaknesses. First, it measures a relative efficiency only. An 
object that has a high efficiency score in one group may or 
may not be equally efficient in another group. Second, the 
DEA may assign the fully efficient score to an object that has 
just one very large output or very small input. Third, the 
Linear Programming algorithm that DEA uses, is actually a 
black box with regard to the weight coefficients in the ratio 
DEA model (2). Though, theoretically, DEAtakes into 
consideration all of the indicators by maximizing the ratio of 
the weighted sum of all outputs to the weighted sum of all 
inputs, the DEA optimal solution typically assigns the non-
zero weights only to some of them.This makes it possible to 
increase inputs or decrease outputs having zero weights 
arbitrarily, without any change in the efficiency score. Thus, 
the details of the efficiency score assignment are hidden from 
the researcher. 

In this paper below we present DEA Partially Perfect 
Objects (DEA PPO) that develops further a DEA model with 
witha Perfect Object (DEA PO), a version of DEA aimed at 

improvement of these weaknesses and simplification of the 
calculations. The paper is organized as follows. Section II 
describes DEA PO, and section III, DEA PPO. Section 
IVpresents an example of applications. Conclusive remarks 
are given in section V.  

II. DEA WITH A PERFECT OBJECT  
Data Envelopment Analysis with a perfect Object (DEA 

PO) was developed in publications [5]-[7].It was shown in 
these publications that if a Perfect Object is added to the 
group, then the efficiency sore may be calculated as a ratio of 
the largest relative output to the smallest relative input: 
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where relative means expressed in terms of PO, lower indexes 
i = 1..s and  j = 1..r stand for outputs and  inputs, respectively, 
lower indexes i* and j*, for the maximum or minimum 
relative values for the output and input, respectively; lower 
index 0 stands for the Perfect Object. DEA PO is based on an 
idea of comparison with best practices. This idea is known in 
the DEA literature, but DEA PO extends it to (7) that provides 
an explicit solution. 

Geometric interpretation for the DEA PO for one input and 
one output is given in Fig. 1 borrowed from [8]. Formula (7) 
may be proved in this case, based on the geometric 
interpretation . The proof is given in Fig. 2. In this figure, the 
PO is located at the point F, and an actual object - at the point 
G. The input - minimization efficiency score equals AB/AG, 
the output-minimization - DG/DK. The relative input is 
AG/AC, output - DG/DN. In this situation, there is no need for 
consideration of maximum relative output or minimum 
relative input, since only one input and one output are present. 
The formula (7) states in this case that  

 
EIM = AB/AG = (DG/DN)/(AG/AC)     (8) 

 
The proofis based on the proportions between the lengths of 

the segments cut from the sides of an angle by parallel lines: 
 

 (DG/DN)/(AG/AC) = (DG/DN)·(AC/AG) = 
(AC/DN)·(DG/AG)= (MF/OM)·(OA/LK) = 
(MF/OM)·(OA/OL)·(OL/LK) = 
(OA/OL)·(MF/OM)·(OL/LK) = (OA/OL)·tan(α)·cot(α) = 
(OA/OL) = AB/LK = AB/AG = EIM   ■              (9) 
  
It may be noted that the equality of the two types of 

efficiency - input-minimization and output-maximization 
ones, EIM = EOM, follows immediately from Fig. 2 because 
EOM= DG/DK = AB/LK = EIM.  
 DEA PO improves the conventional DEA in the ability to 
measure absolute efficiency. If the inputs and outputs of the 
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PO are set exogenously, for example, as national or 
international standards, or industry norms or standards, the 
DEA PO efficiency score is closer to the absolute efficiency. 
Also, the procedure of assigning the efficiency scores is 
transparent: it is the ratio of the greatest output to the smallest 
input, both measured in terms of the PO. Also, to receive a 
high efficiency score, an object has to have two, rather than 
one, indicators: one input and one output. Nevertheless, the 
problem of inclusion of all indicators in the DEA PO still 
remains, and is addressed in the DEA with Partially Efficient 
Objects (DEA PPO).   

III. DEA WITH PARTIALLY PERFECT OBJECTS 
DEA with Partially Perfect Objects (DEA PPO) was 

developed in [8] that we follow in this section. DEA PPO 
extends DEA PO by incorporating all of the ratios of relative 
outputs to inputs, thus eliminating the undesirable property of 
using their best ratio only. DEA PPO uses a collection of 
Partially Perfect Objects (PPO) and corresponding partial 
efficiencies. Taken together, they allow for a more 
comprehensive evaluation of the efficiency and a more 
justifiable ranking of the objects. ThePPO’s are generated by 
consecutive elimination of (1) currently best input or output, 
and, (2) two currently best indicators - two smaller inputs, two 
larger outputs, or one smallest input and one largest output, 
correspondingly, etc. Every time, we apply (7) to evaluate 
partial efficiency using the remaining indicators. 

 
 

 
Fig. 1 DEA frontiers for one input and one output [8]. Points A, B, C, 
D, and G are the locations of the DMU's. OB is aDEA CRS frontier, 

OF, is aDEA PO frontier. A Perfect Object is located at point F, 
corresponding to minimum input and maximum output in the group. 
All actual objects are located to the right or on the DEA frontier. The 
DEA frontier passes through the point of location of the DMU with a 

maximum ratio of output to input. The DEA PO frontier passes 
through the point of maximum output and minimum input in the 
group. Input-oriented DEA efficiency score at point G equals to 

HL/HG, DEA PO efficiency score, HK/HG. 
 

 
Fig. 2 Geometric proof for one input and one output 

 
Since partial efficiencies are calculated using different 

numbers of inputs and outputs, we assign each of them a 
weight proportional to the share of the total number of 
indicators used or its calculation.1 The weights add up to 1. 
We denote partial efficiencies as 

 

inputsmallestl

outputstlargek
E

th

th
kl = .        (10) 

 
In this notation, the DEA PO efficiency provided by (7) 

becomes the partial efficiency E11. It is the greatest partial 
efficiency. 

The process of forming the weight coefficients is as 
follows. For an object withr inputs and s outputs, a partial 
efficiency score Ekl is obtained by eliminating (k  1) outputs 
and (l  1) inputs.  This means that only (r + s  k   l + 2) 
indicators out of the total number of (r + s) remain. The 
smaller number of contributing indicators leads to the smaller 
weight that the Ekl receives with regard to the highest 
efficiency score of E11 that is calculated using all inputs and 
outputs.2 As shown in [8], if k+l>p+q then Ekl ≤ Epq. For k+l = 
p+q, the relationship between Ekl and Epqdepends on a 
particular actual object.  

The values of wkl are calculated in two steps. At the first 
step, we calculate the raw weights Wkl, then, at the second 
step, we adjust them to make the sum equal one. By doing so, 
we get wkl  = Wkl / W, where Wkl stands for the raw weights, W, 
for their sum, and wkl  = Wkl / W for the weights scaled to sum 
up to 1. Adding up the partial efficiencies Ekl taken with their 
weight coefficients wkl we arrive at the weighted efficiency 
score Ew: 

 
Ew = w11· E11 + w12·E12 + …wrs·Ers.      (11) 

 
This process involves all possible ratios of relative outputs 

to inputs in the order determined by their ranks. It results in r 

 
1This way of assigning weights is not unique; we use it in this paper as a 

reasonable approach. 
2The Excel functions LARGE(array, k) and SMALL(array, l) provide a 

convenient tool for the calculations. 
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×s partial efficiencies ranging from largest E11 to smallest Ers. 
The last efficiency term Ersis calculated based on only two 
indicators: the smallest relative output and the largest relative 
input. It is the smallest relative efficiency score. 

The weighted efficiency Ew equals 
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where 
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Since the weight coefficients wklare proportional to the 

share of the total number of inputs and outputs that the 
corresponding kl-partial perfect object comprises,we have for 
the kl-efficiency coefficient: 

 
( 1) ( 1) 21kl
s k r l k lw W W

r s r s
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k = 1..s, l = 1..r,         (14) 
 
where r and s stand for the total number of inputs or outputs, 
respectively, W, for a normalizing coefficient making the sum 
of the weights equals to 1. From (14) it follows that 
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The denominator of this fraction may be simplified by using 

the formula for the sum of an arithmetic progression: 
 

( )
1 1 1 1

2 11 2
s r s r

k l k l

k l r s k l
r s r s= = = =

+ −⎛ ⎞− = × + + − −⎜ ⎟+ +⎝ ⎠
∑ ∑ ∑ ∑

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−++×

+ ∑ ∑ ∑ ∑∑ ∑
= = = == =

s

k

r

l

s

k

r

l

s

k

r

l
srsr

sr 1 1 1 11 1
21  

= ( )
( )sr

srrs
+

−+
2

2               (16) 

 
so that 
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2

−+
+

=
srrs

srW         (17) 

 
The computations in (16) leading to (17) may be easily 

carried out by using a Computer Algebra System, such as that 
of the graphing calculator TI-89.  

Substituting (16) into (14), we get: 
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For example, in case of two inputs and two outputs, r = 2, s 

= 2, we get w11 = 2(2+2-1-1+2)/(2·2(2+2+2)) = 8/24 = 1/3. 
Similar to that, we obtain that w12 = w21 = 1/4, and w22 = 1/6. 
The total is 1/3 + 1/4 + 1/4 + 1/6 = 1. This result is used in the 
following section. It may also be noted that if k + l = p + q, 
thenwkl = wpq. 

IV. EXAMPLE OF APPLICATIONS 
In this section we apply DEA PPO to  firm evaluation. This 

problem arises whenan investment portfolio is compiled. In 
our example, data of 10 firms,denoted as C01,C02,…,C10, 
were chosen randomly from the website finance.yahoo.com. 
The following types of indicators were used: profitability, 
management effectiveness, market valuation, and volatility. 
For each type we chose a representative indicator as follows: 
profit margin (output-1), return on assets (output-2), market-
value-to-revenue ratio (input-1), and the debt-to-equity ratio 
(input-2), respectively.The data are presented in columns 2 
through 5 of the Table I. The Perfect Object is shown in the 
last row. It comprises maximal outputs and minimal inputs. 
Columns 6 through 9 contain relative outputs and inputs, 
respectively, calculated as the ratios of actual input or output 
to the corresponding value of the PO. 

Column 10 contains the DEA PO efficiency score E11 
equals the ratio of the greatest relative output to the smallest 
relative input. For example, for the firm C01, E11 = 
max(0.3150,1.0000/min(4.1515, 26.6291) = 1.0000/4.1515 =  
0.2409. DEA PO stops in this step, but DEA PPO assigns the 
weight w11 = 1/3 = 0.3333 and continues. The weight was 
calculated in the previous section. 

Column 11 presents the E12 efficiency scores obtained by 
the eliminating the smallest relative input. Depending on the 
particular object, it may be either relative input-1 or relative 
input-2, which is smaller. For the firm C01, it is min(4.1515, 
26.6291) = 4.1515, the relative input-1. To calculate E12 we 
apply (7) to the largest relative output-2 (1.000) and the only 
remaining relative input-2 equals 26.6291. Their ratio is E12 = 
1.0000/26.6291 = 0.0376. The weight coefficient for this 
partial efficiency is w12 = 1/4 = 0.2500, as was calculated in 
the previous section. 

Column 12 is similar to the column 11, except that the 
greatest relative output, rather than smallest relative input, is 
eliminated. For example, for the firm C01 the output to 
eliminate is max(0.3150, 1.0000) = 1.0000, the relative output-
2. The relative output-1 (0.3150) is retained for the 
calculations. Applying (7) again, we get E21 = 
0.3150/min(4.1515, 26.6291) = 0.3150/4.1515 = 0.0759. 
Theweight coefficient w21 = 1/4 = 0.2500, as was shown in 
previous section. 

Column 13 contains the partial efficiency scores E22. They 
are obtained by eliminating both largest relative output and 
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smallest relative input. For the firm C01, the indicators 
toeliminate are: max(0.3150,1.0000) = 1.0000, the relative 
output-2, and min(4.1515, 26.6291) = 4.1515, the relative 
input-1. Remaining are the relative output-1 (0.3115) and 
relative input-2 (26.6291). Applying again (7), we get E22 = 
0.3115/26.6291 = 0.0118. The weight coefficient w22 = 1/6 = 
0.1667, as was calculated above. 

Column 14 shows the weighted efficiency scores calculated 
by using (11). For example, for the firm C01 it is 
Ew=0.2409·0.3333+0.0376·0.2500+0.0759·0.2500+0.0118·0.1
667=0.1106. Column 15 shows the ranks of the firms based on 
the weighted efficiency scores. A firm with the greatest score 
received the rank of one. As follows from the ranking, the 
most efficient is the firm C08 (Ew = 0.3748, rank = 1), the 
second best is C02 (Ew = 0.2645, rank = 2), and the third rank 
is assigned to the firm C05 (Ew = 0.1879, rank= 3). Based on 
the DEA PPO analysis, these three firmsmay berecommended 
for the inclusion in the portfolio. 

This case study is just an example of numerous possible 
applications of DEA PPO, see, for example, [8]. Simplicity of 
calculations allows its use at any level of preparation. Since in 
the DEA PPO separates the task into independent threads, the 
calculations may be performed by different groups of 
participants working independently and combining the results 
at the final step. TheDEA PPO may be also useful as an 
introductory study of the conventional DEA.     

V. CONCLUSIONS 

This paper presents DEA with Partially Perfect Objects 
(DEA PPO). The DEA PPO, similar to the DEA with a Perfect 
Object (DEA PO), appends the group of actual objects with a 
virtual Perfect Object having largest outputs and smallest 
inputs in the group. The DEA PPO inherits the explicit 
solution formula of the DEA PO and its propensity to evaluate 
absolute efficiency. It is the case when the PO is set up based, 
for example, on national, international, industrial, etc. 
standards. However, DEA PPO uses not only the Perfect 
Object, but a sequence of Partially Perfect Objects, obtained 
by consecutive elimination of the currentbest relative 
indicator. By doing so, DEA PPO generates a series of partial 
efficiency scores and, finally, a weighted efficiency. The last 
is calculated using all possible ratios of relative outputs to 
relative inputs, thus preventing an object having just one large 
output and one small input from obtaining a high efficiency 
score.The computational scheme of the DEA PPO is simple 
and intuitive. Though, theoretically, DEA PPO uses an LP 
procedure, it simplifies to just calculation of a ratio. An 
example of applications demonstrates the technique of 
computations and provides a general idea of applications in 
different fields. Among the promising areas are teaching 
quantitative reasoning and introduction to DEA. 
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9 0.0436 0.0250 1.19 110.64 0.0475 0.1358 1.2020 5.7475 0.1130 

0.02
36 

0.03
95 

0.00
83 0.0548 6 

C1
0 0.0380 0.0118 0.99 45.01 0.0414 0.0641 1.0000 2.3382 0.0641 

0.02
74 

0.04
14 

0.01
77 0.0415 7 

PO  0.9180 0.1841 0.99 19.25 1.0000 1.0000 1.0000 1.0000 1.0000 
1.00
00 

1.00
00 

1.00
00 1.0000 
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