Establishment of Kinetic Zone Diagrams via Simulated Linear Sweep Voltammograms for Soluble-Insoluble Systems
Authors: Imene Atek, Abed M. Affoune, Hubert Girault, Pekka Peljo
Abstract:
Due to the need for a rigorous mathematical model that can help to estimate kinetic properties for soluble-insoluble systems, through voltammetric experiments, a Nicholson Semi Analytical Approach was used in this work for modeling and prediction of theoretical linear sweep voltammetry responses for reversible, quasi reversible or irreversible electron transfer reactions. The redox system of interest is a one-step metal electrodeposition process. A rigorous analysis of simulated linear scan voltammetric responses following variation of dimensionless factors, the rate constant and charge transfer coefficients in a broad range was studied and presented in the form of the so called kinetic zones diagrams. These kinetic diagrams were divided into three kinetics zones. Interpreting these zones leads to empirical mathematical models which can allow the experimenter to determine electrodeposition reactions kinetics whatever the degree of reversibility. The validity of the obtained results was tested and an excellent experiment–theory agreement has been showed.
Keywords: Electrodeposition, kinetics diagrams, modeling, voltammetry.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.3669267
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 816References:
[1] L.K. Bieniasz, Analysis of the applicability of the integral equation method in the theory of transient electroanalytical experiments for homogeneous reaction–diffusion systems: The case of planar electrodes, J. Electroanal. Chem. 657 (2011) 91–97. doi:10.1016/J.JELECHEM.2011.03.027
[2] L.K. Bieniasz, Use of dynamically adaptive grid techniques for the solution of electrochemical kinetic equations: Part 5. A finite-difference, adaptive space/time grid strategy based on a patch-type local uniform spatial grid refinement, for kinetic models in one-dimensional space geometry, J. Electroanal. Chem. 481 (2000) 115–133. doi:10.1016/S0022-0728(99)00460-X.
[3] D. Yan, M.Z. Bazant, P.M. Biesheuvel, M.C. Pugh, F.P. Dawson, Theory of linear sweep voltammetry with diffuse charge: Unsupported electrolytes, thin films, and leaky membranes, Phys. Rev. E. 95 (2017) 33303. doi:10.1103/PhysRevE.95.033303
[4] K.B. Oldham, J.C. Myland, Modelling cyclic voltammetry without digital simulation, Electrochim. Acta. 56 (2011) 10612–10625. doi:10.1016/J.ELECTACTA.2011.05.044.W.-K. Chen, Linear Networks and Systems (Book style). Belmont, CA: Wadsworth, 1993, pp. 123–135.
[5] D. Krulic, N. Fatouros, D. Liu, A complementary survey of staircase voltammetry with metal ion deposition on macroelectrodes, J. Electroanal. Chem. 754 (2015) 30–39. doi:10.1016/J.JELECHEM.2015.06.012.
[6] A. Saila, Etude des systemes electrochimiques quasi-reversibles par voltamperometrie a balayage lineaire et semi-integration. Applications aux comportements de rhenium et dysprosium en milieux de sels fondus, Univ. Badji Mokhtar, Annaba, 2010. http://biblio.univ-annaba.dz/wp-content/uploads/2015/01/SAILA-Abdelkader.pdf..
[7] I. Atek, S. Maye, H.H. Girault, A.M. Affoune, P. Peljo, J. Electroanal. Chem. 818 (2018) 35–43.
[8] T. Berzins, P. Delahay, Oscillographic Polarographic Waves for the Reversible Deposition of Metals on Solid Electrodes, J. Am. Chem. Soc. 75 (1953) 555–559. doi:10.1021/ja01099a013.
[9] H. Matsuda, Y. Ayabe, Zur Theorie der Randles‐Sevčikschen Kathodenstrahl‐Polarographie, Zeitschrift Für Elektrochemie, Berichte Der Bunsengesellschaft Für Phys. Chemie. 59 (1955) 494–503. doi:10.1002/BBPC.19550590605.
[10] P. Peljo, D. Lloyd, N. Doan, M. Majaneva, K. Kontturi, Towards a thermally regenerative all-copper redox flow battery, Phys. Chem. Chem. Phys. 16 (2014) 2831–2835. doi:10.1039/C3CP54585G.
[11] R.R. Bessette, J.W. Olver, Measurement of diffusion coefficients for the reduction of copper(I) and (II) in acetonitrile, J. Electroanal. Chem. 21 (1969) 525–529. doi:10.1016/S0022-0728(69)80329-3.