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Abstract—The problem of symmetries in field theory has been 
analyzed using geometric frameworks, such as the multisymplectic 
models by using in particular the multivector field formalism. In this 
paper, we expand the vector fields associated to infinitesimal 
symmetries which give rise to invariant quantities as Noether currents 
for classical field theories and relativistic mechanic using the 
multisymplectic geometry where the Poincaré-Cartan form has thus 
been greatly simplified using the Second Order Partial Differential 
Equation (SOPDE) for multi-vector fields verifying Euler equations. 
These symmetries have been classified naturally according to the 
construction of the fiber bundle used.  In this work, unlike other 
works using the analytical method, our geometric model has allowed 
us firstly to distinguish the angular moments of the gauge field 
obtained during different transformations while these moments are 
gathered in a single expression and are obtained during a rotation in 
the Minkowsky space. Secondly, no conditions are imposed on the 
Lagrangian of the mechanics with respect to its dependence in time 
and in qi, the currents obtained naturally from the transformations are 
respectively the energy and the momentum of the system. 

 
Keywords—Field theories, relativistic mechanics, Lagrangian 

formalism, multisymplectic geometry, symmetries, Noether theorem, 
conservation laws.  

I. INTRODUCTION 
HERE are different kinds of geometrical models. We have 
the so-called k-symplectic formalism which uses the k-

symplectic structures introduced by Awane [1], [2] and which 
replaced the polysymplectic structures used by Gűnther [3]. In 
this polysymplectic formalism [4], a geometric Hamiltonian 
formalism for field theories was given by introduction of a 
vector-valued generalization of a symplectic form called a 
polysymplectic form. From this geometrical model, many of 
the characteristics of the autonomous Hamiltonian systems 
arise. The k-symplectic formalism is used to give a geometric 
description to field theories whose Lagrangian does not 
depend on the base coordinates denoted by  ktt ,...,1

 (said the 

space-time coordinates), which means that the k-symplectic 
formalism is verified for Lagrangians and Hamiltonians which 
depend only on fields (i.e. Lagrangians  jjL  ,...,  and 

Hamiltonians  jj pH  ,..., ).  A natural extension of this is the 

k-cosymplectic formalism which is the generalization to field 
theories of the cosymplectic (k=1) description of non-
autonomous mechanical systems [5], [6]. This formalism is 
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devoted to describing field theories involving the coordinates 
 ktt ,...,1

 on the Lagrangian  jjtL 
  ,...,,  and on the 

Hamiltonian  jj ptH 
  ,...,, .   

Another way to derive the field equations is to use the so-
called multisymplectic formalism, developed by Tulczyjew’s 
school in Warsaw [7]-[10], and independently by García and 
Pérez-Rendón [11], [12] and Goldschmidt and Sternberg [13]. 
This approach was revised by Martin [14], [15] and Gotay et 
al. [16]-[19] and more recently by Cantrijin et al. [20], [21]. A 
natural extension of this geometry was successfully operated 
to describe the dynamic for non-autonomous relativistic 
mechanical systems [22]. 

The study of symmetries and conservation laws of the k-
symplectic first-order classical field theories in both 
Lagrangian and Hamiltonian formalisms was treated in [23], 
[24]. In these works, they introduced different kinds of 
symmetries and their relation; they associated to some of them 
the so-called Cartan symmetries. This problem of symmetries 
of the theories was extended to k-cosymplectic Hamiltonian 
system. In particular, those called the almost standard k-
cosymplectic Hamiltonian system. To these, the authors 
associated Noether symmetries [25].  

The problem of symmetries in field theory has also been 
treated using other geometric models such as the 
multisymplectic one by using in particular the multivector 
field formalism [26]. In this work, Noether’s theorem is 
proved and generalized in order to include higher-order 
Cartan-Noether symmetries. Another subject of interest of the 
study of symmetries is to have different notions of 
infinitesimal symmetries. The work in [27] is devoted to 
classifying the different kind of infinitesimal symmetries and 
to study their relationship with conservation laws in the 
geometric context of multisymplectic geometry and 
Ehresmann connections. 

In the present paper, we investigate some infinitesimal 
symmetries on the geometrical model already developed in 
[22] in order to retrieve Noether currents for classical field and 
mechanical theories by setting some particular multivector 
fields.  

The paper is structured as follows: In Sections II and III, we 
review the Lagrangian formalism developed for 
multisymplectic geometry for hyper regular non-autonomous 
classical field theories and the relativistic mechanics 
respectively. Section IV is devoted to retrieve Noether current 
of the systems via solutions of the equations of motion by 
using the analytical method. In Sections V and VI, we 
introduce some particular multivector fields of infinitesimal 
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symmetries to retrieve Noether currents for classical field 
theory and mechanical systems respectively, and finally we 
close the work with a conclusion. 

II. MULTISYMPLECTIC GEOMETRY FOR CLASSICAL FIELD 

THEORIES 

A. Lagrangian Formalism 

The field theories are the classical limit of quantum fields’ 
theories. Those are the fields, such as gauge fields of Yang-
Mills which interact with matter fields. A geometric 
description has already been done [28] in building a principal 
fibre bundle 2,0SG   where G Lie group associated in this 
case to the quantum fields of YM. This fibre is above a 
database the flat space: Minkowski space (k=4) which 
coincides with the form of the Lagrangian of fields that we 
studied (i.e. Lagrangian which is only explicit on fields, not on 
the database coordinates   3,0

t ). The classical limit of these 

Lagrangians corresponds to the study of fields without 
constraints (this coincides with the abstraction of ghosts which 
corresponds to the 2,0S  group). The favourable principal fibre 
of configuration is )( MGGE  , and the structure in this 

case is 4-symplectic (i.e. )( 1
40 MTL  ).   

In this section, we are going to summarize the 
multisymplectic geometry given for studying the dynamic of 
field theories [29]-[31]. In particular, we have concentrated on 
dynamic of most general case of field theories: theories whose 
Lagrangians are explicit on database coordinates

    3,1
0

3,0 ,   i
itcttt 

  and which are hyper-regular [22]. 

So, we have followed the following steps: 
Let  : E  M be a fibre bundle with M the base space 

which is a flat manifold, i.e. the Minkowski space with global 
coordinates  .t    is the pull back of a section  

 

   dAtytt

ER
AA ,1et3,0/,

: 4










 

 

where {   tA }  physical fields. These fields are presented 

by a fibre above each ( )t of the base space 4R . The set of 

fibres is denoted by the space M, so the fibre bundle E will be 
 

MRE  4 .                                  (1) 
 

Let EJ  11 :  be the first-order jet bundle of  . By 
using (1), 

MTRJ 1
4

41                                (2) 
 

where MT 1
4

 is the Whitney sum of 4-copies of the tangent 

space TM at the space M with local coordinates )v,( AAy 
. 

1  is the pull back of a section which is a mapping 

 1: JE  . If   is a global section of 1  such that 

EId 1 ,  is called a jet field. In this case,   is an 

integral section of  and  1j  (where  11 : JMj   

denotes the canonical lifting of  ) and   is the integral jet 

field  
 

 1 1: EE J Id      and 1 1 4 1/ :j j R J        

 

If )( t  is a natural local system on 4R , )v,,( AAyt   is the 

induced local coordinates system on 1J  where  
 

)(1
 tj )v,,( AAyt  = ))(),(,(   ttt AA       (3) 

 

with 



 A
A

A

t



 v velocity of field.  

Let :11   J 1  M, where 1  is the pull back 

of the section 1j . 

A Lagrangian density is usually written as L = L ( 1  ) 
where L  1JC  is the Lagrangian function and  is the 

volume form on 4R   44 R  with 
 

4, 3210  kdtdtdtdttd k  
 

By using the natural system of coordinates defined on 1J , 
the expression of the Lagrangian density is: 

 
3210)v,,( dtdtdtdtytLtdL AAk          (4) 

 

The expressions of 
L  and L , the Poincaré-Cartan 4 and 

5 forms, are respectively [23]: 
 

1 ( v )
v v

A k A k
L A A

L L
dy d t L d t 

 

  
   
 

           (5a) 

 
5 1( )L Ld J                           (5b) 

 

where td
t

itd kk )(1
 


 . 

Let ),( EM  be the set of sections    cited above and 

),( 1
LJ   be the Lagrangian system. The Lagrangian field 

equations can be derived from a variational principle called 
the Hamilton principle associated to the Lagrangian formalism 
which is given by:  

 

  0LLXi                                   (6) 
 

where   )( 14  JX LL   is a class of holonomic multivector 

fields associated to 1j  ( LX  is 1 -transverse, integrable 

and SOPDE). 

The local expression of LX  is given by: 
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)
v

(3
0 A

A
A

A
L G

y
F

t
X


 











 
               (7) 

 

where vA AF   and 
2 A

A y
G

t t  



 

. 

By substituting (7) and (5) in (6), the Euler-Lagrange 
equations for the fields satisfy: 

 

dAj
L

ty

L
AA

,1,0)
v

( 1 















 


              (8) 

 

In this case, 
0

vv

2





BA

L



1)( Jy  , the Lagrangian is 

hyper-regular (regular globally). 

III. MULTISYMLECTIC GEOMETRY FOR THE RELATIVISTIC 

MECHANICS 

A. Lagrangian Formalism  

By analogy with the work already done for the field 
theories, we have extended the idea to the relativistic 
mechanics [22]. 

Let RMRE : , where E is the configuration 
bundle, R as a base space spawned by (ct) as global coordinate 

and 3RM   is the fibre above each point of the database 
(dim M = 3 and dim E = 4). 

Let   3,1
0

3,0
,)( 

 i
iqctqq


  be a natural coordinate 

defined in E. If the configuration bundle E can be equipped 

with a metric  1,1,1,1   such that 
  qq  , in this 

case. E coincides with the Minkowski space. 

We note that “c” is speed of light, and   3,1i
iq  are the 

generalized coordinates. 

We note 1J  the first-order jet bundle of   associated to 

the section TMRJRj  :: 11  .  

The natural coordinates defined on 1J  as done in (3) is 

),,( 0 ii qqq   and the global integral section 1j  such that: 
 

1 0 0 0

0
0

( ) ( , ( ) ( ) ( ) ,

( )
( ) ( ) ( ) ( ))

i i i

i i i i
i

j q q q t q t

dq q t
q t t q t

q c t cdt c

  

 

  

 
   

 
 

                          (9) 

 
We define the Lagrange function RTMRL :  

 

dtqqqLdtL ii ),,( 0   
 

The Poincaré-Cartan 1-form L  and 2-form L  associated 

at L as in (5) by: 
 

LL

i
i

i
iL

d

dqLq
q

L

c
dq

q

L















 0)(
1 

             (10) 

 

We put ( ) ( )
i

idq
t q t

cdt
   and 

2

2

( )
( ) ( )

i i
id q q t

t q t
c dt c

 
    

 

where )(tq i  and )(tqi  are the velocity and the acceleration 

of the mechanical system, respectively.  
For the relativistic mechanics, at the Hamilton principal (6), 

we can associate the following holonomic multivector field, 
(7) becomes: 

 

i
i

i
i

L q
q

q
q

q
X















0

                     (11) 

  
We can do the following remark that 
 

Li
i

i
i

L X
cq

q
q

q
tc

X
11























            (12) 

 
For this dynamic, the first-order jet bundle 1J  is generated 

by the multivector field LX  (i.e. the multivector field is a 

class of integrable and  transverse   )( 11  JX L   which 

satisfy the Euler Lagrange equation 
 

0)( 














ii q

L

dt

d

q

L


                         (13) 

IV. NOETHER CURRENT VIA ANALYTICAL METHOD 

The physical characteristics, in particular, the dynamical 
invariants, of the systems can be expressed via solutions of the 
equations of motion [32]-[34]. 

Let the infinitesimal transformations be 
 

     ttt

tttt

 




''

'

                        (14) 
 

Note that the variation  t  is defined as 

 

     ' 't t t                         (15) 

 
Equation (15) represents the change of the field due to both 

the transformation of the field and the coordinate 
transformation. One defines in a fixed point in space by 

   

     0 't t t                           (16) 

 
Transformation of the integration measure limiting to first 

order is:  
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  tdttd

t

t

t

t

t

t

t

t

td
td

td
td 44

4

4

4

1

1

4

1

1

4
4

4
4 1

'
..........

'

'
.......

'

det
'

det' 












































 

 (17) 

 

The relationship between   and  0  to first-order is: 

         
     
        0

' ' '

' '

'

t t t t t t

t t t t

t t t t t

    


   


    

      

   

     

    

   

    

 

 
where  

      
  tttt  0  

           (18)
 

 
The variation of the action to first-order  

 

         
           

       

    

     

    

 




















































































































Lt
L

td
LL

td

Lt
L

td
LL

td

Lt
LL

td

LttLLtdLtLtd

tttLtdtttLttd

tttLtdtttLtdS







































































0
4

0
4

0
4

0
4

00
4

0
44

44

44

,,','',''1

,,','','''

                             (19) 
 
By using (8), the first term of the last equation in (19) 

vanishes and substituting (18) in the last term of (19), it gives: 
 

   

   

4

4

L
S d t t t L

L L
d t L t

 
   

 

 
    

   

     


    
 

      
   
         

       





 

 
The conserved current is therefore 
 

   
L L

J L t  
   

   

    
 

       
         (20)

 

V. NOETHER CURRENTS FOR FIELD THEORY 

In this section, we are going to concentrate ourselves on 
fields’ theory and use the geometrical model proposed in [22]. 
In particular, we are going to establish the physical 
transformations associated to diffeomorphisms [23]-[25] 
which give Noether currents; the result will be the same for 
the mechanic theory.  

In Section II, we saw that the dynamic of field theories can 
be derived by the Hamilton principle which is given by:  

 

  0LLXi  
 

where LX  is holonomic multivector fields integrable and 

SOPDE. 
 

    
A

A
A

A
L G

y
F

t
X


 v











                     (21) 

 
where 

A
A

AAAAA

tt

y
GF   





2

andv

 
In this condition, the Poincare-Cartan 4-form (5a) becomes: 

 
     tdtttL kii

L   ,,                  (22) 

A. A Translation in the Base Space “Space-Time” 

Consider an infinitesimal space-time translations associated 
to diffeomorphisms: 

  3,0/

:








 constatattt

RR kk

   (23) 

 

and let   be a symmetry of the multisymplectic lagrangian 
system for fields 

 

       tatttt

MRMR
ii

kk





,,

:           (24) 
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           ttattttt

MTRMTR
iiii

kk








,,,,

: 1
4

1
4

 (25) 
 
During this transformation, the theory remains covariant, 

the Poincare-Cartan 4-form (22) can be written: 
 

     tdLttt kii
LL  ~

,,
~

                (26) 

  
A limited development of Taylor to first order of the 

Poincaré-Cartan 4-form (24) for this infinitesimal space-time 

translation gives (we treat L as a function)  
 

    
    

 

, ,

, ,

i i
L L

i i
L

ii
L L L

i i

d t

t t t

t t t

t t
t t t



   

   

 
  



   

  

  
 

     



       
      





 

 

where 
ii

t
  




 ,  

 

         , , , ,i i i i
L L

i i
L L Y Li i

t t t t t t

d a i

       


  



     

    
 

    

  
        


               

(27) 
 

The term in bracket in (27) will be identified to an 
infinitesimal vector field associated to this symmetry 

 

i i
i i

Y a 
  



 
 

  
       

            (28) 

 
Unlike other authors [23]-[25], [27], [36], to this 

infinitesimal transformation, we must have (the result will be 
proved later) 

 

LYLY
k diidtdf 

 
 

 

where Cf                                                                   (29)
 

 

where td k  is the volume form on M and k=dim M. The 

conservation law derived from (29) will be 
 

0 
 f                                  (30) 

 

We identify f  to Noether current. Contracting (22) by 

(28), 
 

 


























td
L

td
L

tdLtdLai k
i

ik
i

i

td

kk
LY

k 













1

 

 
The differential “d” defined on the first-order jet bundle 

1J  cited in Section II 
 

j j
j j

d dt d d
 



 
 
 

   
                 (31) 

 

 

 
































































































tdd
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tdd
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tdd
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dttd

L
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tddt
L

dttd
L

tddt
t
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tddt
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dttdLtddtLdttdLtddtLaid

kj
ij

ikj
ij

ikj
i

i
j

td

kj
j

kj
j

kj
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ikj
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i

td

kj
j

kj
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td

k
i

ik
i
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i

td

k
i

ik
i
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i
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td

k

td
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td

kk
LY

kj
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1
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1
22

2

11

1

)(







  

 

     (32) 

  
Using that 
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1

0 0,3

0

0

k

j
j k k j k

j
j k k j k

k k

dt d t

d
d d t dt d t dt d t

dt

d
d d t dt d t dt d t

dt

d t dt d t



 


  
 

 
 



 


 



    

      

      


 

       (33) 

 

td
L

td
L

tdLtdLid k
j

jk
j

jkk
LY


 












  222 1

 
 (34) 

 
Contracting (22) by (31), 
 

 
k

k k
L

d t

j k j k
j j

d L dt d t L d t dt

L L
d d t d d t

 
 






 
 

     

 
   
 


 

 
Using that 
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tddtdd
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Using (35), (36) becomes 
 




















  td
L

td
L

tdLtdLadi k
j

jk
j

jkk
LY










 13

                                                  (37) 
 
Inserting (34) and (37) in (29), it gives 
  

td
LL

Ladiid k
j

j
j

j
LYLY
































 
                                                            (38) 

Using the Euler-Lagrange equation (8), we get 
 

































jjj

LLL





                          (39) 

 
Inserting (39) in (38) and using (19), it becomes 
 

j k
Y L Y L j

j k k
j

L
d i i d a L a d t

L
L t d t f d t

  
  



 
 



   


 


 
    

  
 

     
  

    (40) 

By identification the members of (40), we find 
 















ta

at
jjj 



 

                    (41) 

 
From (40), the conserved current obtained is the second 

rank tensor ρ
μT  called energy-momentum tensor or stress-

energy tensor. 
 







 


L

L
T j

j






 

                        (42) 

 
The results (41) and (42) have been already established in 

[32]-[34]. 

B. A Rotation in the Base Space “Space-Time” 

Consider now an infinitesimal rotation in the space-time. 
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This transformation is an element 






    of 

Lorentz group denoted as SO(1, 3) which is associated to the 
following diffeomorphisms: 

 

    timeinconstttt

RR kk










 



/

:
   (43)

 
 
The rotation being infinitesimal, the variation in space-time 

coordinates 
 

1/  


  tttt           (44) 

 
In this condition, (24) and (27) become 
 

     


  tttttt

MRMR
ii

kk





,,

:
      (45) 

         


  tttttttt

MTRMTR
iiii

kk








,,,,

: 1
4

1
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(46) 

 

LYLi
i

i
i

L itd 









 



















 

 
The infinitesimal vector field associated, to this symmetry, 

will be 
 




















i

i
i

itY









         (47) 

 

1k k i k i k
Y L i i

L L
i t L d t L d t d t d t

    


   
 


  

          

              
(48) 

 

t t
t

t t


  

     


  

 
    

 
            (49) 

 
By making the same calculus done in Section V.A and 

using (31), (33) and (49), we obtain 

12 2 2i i k k
Y L i j

L L
di t L L t t d t t L d t 

        


     
 

  
          

                (50) 

 

tdd
L

tdd
L

dttdLtddtLd ki
i

ki
i

td

kk
L

k









 








 





 

1

 
 

13 i i k k
Y L i i

L L
i d t L t t d t t L d t 

       


    
 


  

     
   

                                    (51) 

 
Inserting (50) and (51) in (29) 
 

   

   
td

LttL

tt
L

tt
L

td
L

t
L

tLtLdiid

k

j
j

j
j

k
j

j
j

j
LYLY































































































2

1
                                   (52) 

 
Substituting (39), (19) and (49), (52) becomes 
 

   

   

   

1

2

1

2

j j
j j k

Y L Y L

j k
j

L L
t t t t

d i i d d t

L t t L t t

L
t t L t t d t

   
          

 

   
          

    
         



     
   

   

     


   
           
 
      
 

     
  

 

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:11, No:7, 2017 

306International Scholarly and Scientific Research & Innovation 11(7) 2017 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s 

V
ol

:1
1,

 N
o:

7,
 2

01
7 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
07

92
7.

pd
f



   

   

   

 

1
2

2

1

2

1
2

2

1

2

j k
j

j k
j

j k
j

j
j

L
t t L t t d t

L
t t L t t d t

L
L d t

L
t t L t

    
          



    
         



    
        



  
       



     


     


         


    


 
      

  
 

     
  

 
    

  


   


 

 

   
0

1

2

1

2

k

j j k
j j

j k j k
j j

t d t

L L
L d t

L L
t t L t t d t L t d t

 
 

 
    

     
          

 



     
 

       
 



 
 

  
   

         

    
                



       (53) 

  
By identification term by term and using (42), we find 
 

 

 

1

2
1

2
j j j

t t t

t t t

   
   

   
     

   

      

 

  

          (54) 

The Noether current will be  
 

 

 

j
j

L
J t t

L t t t T t T

  
     



   
       

  


 


  


  

            (55) 

 
During a rotation in the base space, i.e. Minkowsy space, 

the Noether current (55) obtained by this symmetry will be 
identified to the angular momentum. The results (54) and (55) 
have already been developed in [32], [33]. 

C. A Translation along the Fibre 

Having the geometric model of the fiber bundle for the 
fields theory proposed in [22], we define a new 
diffeomorphism ~ , in addition to those already mentioned 

above [23]-[25]. This infinitesimal transformation is an 
element   mTU ,....,1/1   

  of special unitary 

group denoted SU(n) which allows to the transformation of 
field coordinates  dii ,...,1/   on the fiber. 

We note that  T  is a Hermitian matrix of SU (n). These 

generators  T  form a Lie algebra / 

 

   TCTT ,  

  3,0

:








 tttt

RR kk

 

 
and 

          


 



tUttt

MM
ji

j
iii 


~

:~
  (56) 

 
The translation in the fiber being infinitesimal, the variation 

in field coordinates 
 

       


  tTtt ji

j
iii          (57) 

 

We also note that infinitesimal    is independent of 

coordinates  t , ~  is said to be global Gauge, using (57): 

 

         





  tTtTt ii

j
ji

j
ii 

 (58) 

 

              


  tTttttttt

MRMR
ji

j
iiii 



,,,

: 44

                                                 (59) 
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                ttttttttt

MTRMTR
iiiiii 






,,,,,,

: 1
4

41
4

4

                                     (60) 
 

  LYi
j

i
ji

j
i

i
Li

i
L

L iTddd 

















































 

 
The infinitesimal vector field associated to this Gauge 

symmetry is 
 

  


















i

j
i

ji

jTY





 



              (61) 

 
Contracting (22) by (61), we have 
 

 

i iL L
Y L i i

i j j k
i ij

i d d

L L
T d t





 



   
 

  
 

 
  
 

  
    

 

 
The differential “d” defined on TM: 
 

l
l

l
l

ddd 






 







                        (62) 

 









































tdd
L

tdd
L

tdd
L

tdd
L

tdd
L

tdd
L

Tid

kl
il

jkl
i

j
l

kl
il

j

kl
il

jkl
il

jkl
i

j
l

i

jLY








































22

22

             (63) 

 

tdd
L

tdd
L

d ki
i

ki
iL 








 








  

 

 








































td
L

tdd
L

tdd
L

tdd
L

td
L

tdd
L

Tdi

k
l

jl
l

kl
li

jkl
li

j

kl
li

jk
l

jl
i

kl
il

ji

jLY







































22

22

                        (64) 

 
Introducing (63) and (64) in (29),      
 

  






















 td
L

td
L

tdd
L

tdd
L

Tdiid k
i

jk
i

jkj
i

kj
i

i

jLYLY






 










                     (65) 

 
Using (57) and (58), (65) becomes  

 

    td
LLLL

TTdiid k
i

j
i

j
i

l
i

lj

l

i

jLYLY














































 









  

 

      td
LL

Ttd
LL

TTdiid k
i

j
i

ji

j
k

i
l

i
lj

l

i

jLYLY 












































 









          (66) 

 
The transformation being infinitesimal  1 , the first 

term in (66), vanishes 
 

  td
LL

Tdiid k
i

j
i

ji

jLYLY 




















 



  (67) 

Using (39), (67) gives 
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   1

2

i j j k
Y L Y L i ij

i j k
ij

i jj i k
i jj i

L L
d i i d T d t

L
T d t

L L
T T d t


  

 


 



 
  

 

    
 

 


   
 

   
         
 

    
  

      

 (68) 

 
Knowing that the matrix elements of SU (n) verify 
 

    jiTT
j

i

i

j  /  
So,  

 

   

1

2

1

2

i j i k
Y L Y L i jj

i j i k
i jj

L L
d i i d T d t

T P P d t


 

 

  
 

    
 

  

   
         
      

 

     (69) 

 
We put 
 

     j
i

i
ji

j PPTJ 
2

1
             (70) 

 
By analogy with the mechanics as we can see below in the 

next section, we conclude that when translating along the 
fiber, the Noether current (70) can be identified to another 
type of angular momentum of the field which is related to the 
internal symmetry representing the Lorentz group in the field 

space  i . This is proved by the natural appearance of the 

matrix elements  ijT   in (70). These terms are introduced 

without any demonstration in [34]. We can also do the 
following remark that this angular momentum is obtained by a 
rotation in the space (1, 3) in [32], [34]. 

VI. NOETHER CURRENTS IN MECHANIC THEORY 

In this section and by analogy with the work already 
developed for the field theories in the above section, we 
extend the idea to the relativistic mechanics by using the 
construction of the fiber bundle proposed in [22]. 

The Poincare-Cartan 1-form (10) becomes 

    , ,i i
L L t q t q t dt                        (71) 

A. A Translation in the Base Space “Time” 

Consider an infinitesimal time translation associated to the 
diffeomorphisms: 

 

     tqatttqt

RMMRMR
ii 



,,

/:

0

3

        (72) 

 

         tqtqatttqtqt

TMRTMR
iiii 






 ,,,,

:

0

  (73) 

 
During this transformation, the Poincare-Cartan 1-form (71) 

can be written: 
 

          tdtqtqtLtqtqt iiii
LL   ,,

~
,,

~ (74) 
 
A limited development of Taylor to first order of the 

Poincaré-Cartan 1-form (74) associated to this infinitesimal 
base time translation gives:  

 

            


























t

q

qt

q

qt
tttqtqttqtqt

i

i
L

i

i
LL

td

ii
L

ii
LL


 

 ,,,,
~

 

          LYLi
i

i
iii

L
ii

L i
q

q
q

q
t

atqtqttqtqt  





















 0,,,,
~

 

 
The associated vector field, in this case, is identified to 
 





















i

i
i

i

q
q

q
q

t
aY


0                   (75) 

 
Contracting (71) by (75) 

0 i i
Y L i i

L L L
i a dt q dt q dt L

t q q


   
       

 


 

 
The differential “d” defined on the first-order jet bundle  
1J  cited in Section III. 

 

j j
j j

d dt dq dq
t q q

  
  
  




              (76) 

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:11, No:7, 2017 

309International Scholarly and Scientific Research & Innovation 11(7) 2017 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s 

V
ol

:1
1,

 N
o:

7,
 2

01
7 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
07

92
7.

pd
f



2 2
0

2

2 2

2 2 2

i i i
Y L i i i

i i i j
i i i j

i j i j i j
jj i j i i j

L L L L L
d i a dt dt dt q dt dt q dt dt q dt

t t q t q q

L L L L
q dt dt q dt dt q dt dq dt

q t q q q t

L L L L
q dq dt q dq dt dq dt

q q q q q q





    
             

   
      

     

   
      

      

  

  
  

  
 

2 2

j

i j i j j j
j i j i j j

dq dt
t

L L L L L
q dq dt q dq dt dt dq dq

q q q q t q q



    
              



    
   

                (77) 

 
Using that 

0

0

0

j j

j j

dt dt

dq dt q dt dt

dq dt q dt dt

 

   

   


 

                 (78) 

 
Substituting (78) in (77), we obtain 




















 dt
q

L
qdt

q

L
qdt

t

L
adi

i
i

i
i

LY 
02     (79) 

 

dtLqd
q

L
dtdq

q

L
dtdt

t

L
d j

j
j

jL 











 



 

 
2 2 2

0
2

2 2 2 2

2

j j j j
Y L j j j j

i j i j i i j
i j i j i i j

i j i
i j j

L L L L L L L
i d a dt dt dt dt dq dt dq dq dt dq

t t t t q q t q q

L L L L
q dq dt q dq dt q dt dt q dq dt

q q q q q t q q

L L
q dq dt q

q q q


      

                  
   

       
       

 
  

  

 
 

    
  

  
 

i i i i i
j jj i i

L L L L
dt q dt dt q dt q dt L

q t q q
 

   
         
  

 

        (80) 

 
Using (78), (80) gives 

 






















 Ldt
q

L
qdt

q

L
qdt

t

L
adi

i
i

i
i

LY 
0    (81)

   
 
Gather (79) and (80) in (29) 
   

0 i i
Y L Y L i i

L L L
d i i d a dt q dt q dt L

t q q
 

   
        

 


  (82) 

 
Using (13) and (19), (82) becomes 
 

)()(0 tLq
q

L

dt

d
dtLq

q

L

dt

d
dtadiid i

i
i

iLL   











 (83)

  
By identification the members of (83), we find  
 

0

0i i i

t a

q a q q t



 



  
                      (84) 

 

The conserved current 00T appearing in (84) is the density 
of the Hamiltonian 

 

00 i
i

L
T H q L

q


  




  
                           (85) 

 
Here, in our model, the Lagrangian one treated is explicitly 

dependent on time 





 



0
t

L  and a translation in time along the 

base leads to a conservation of energy which is the integral 
density of the Hamiltonian 

 

0 00 i
i

L
P T dt q L dt

q

 
    
  


 

 
Equation (85) has already been found in [35] with the 

condition that the Lagrangian is not explicit in time 






 



0
t

L  

B. A Translation along the Fiber 

To a translation of coordinates on the fiber, we associate the 
following application: 

 

  ttt

RR





 :

 
and 
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      iiii atqtqtq

MM



:~
               (86) 

 

       iiii atqtqtttqt

MRMR





,,

:~
           (87) 

 

             tqtqatqtqtttqtqt

TMRTMR
iiiiiii  






,,,,

:

 
 (88) 

 

    
    

, ,

, ,

i i
L L

i i i iL L
L i i

t q t q t

t q t q t dq dq
q q

 

 

   

 
 
 

 

 


 

 

          LYi
Liii

L
ii

L i
q

atqtqttqtqt 


 



  ,,,,
~

 
 
The vector field associated to this infinitesimal 

transformation 
 

i
i

q
aY




                              (89) 

 
The differential “d” defined on the TM 
 

j j
j j

d dq dq
q q

 
 
 


                        (90) 

 

j j
L j j

L L
d dq dt dq dt

q q
  

   
 


  

2
i j j j

Y L ii j j i j

L L L
i d a dq dt dt dq dt

q q q q q
 

   
          




 

 (91) 

i
Y L i

L
i a dt

q
 




 

 


















 dtqd

qq

L
dtdq

qq

L
aid j

ij
j

ij
i

LY 


2

  (92) 

 
Inserting (91) and (92) in (29), we get 
 

i
Y L Y L i

L
d i i d a dt

q
  

  


                       (93) 

 
Using (13) and (19), (93) becomes 
 

  ( )

i
Y L Y L i

i i
i i

d L
d i i d a dt

dt q

d d L
a dt P dt q L t

dt dt q

 

 


   




  






              (94) 

 
By identification the members of (94), we find  
 

0

i iq a

t







                                  (95) 

 

Using the Lagrangian (71), the conserved current 0
iT  

appearing in (94) is the momentum vector tcstPi  obtained 

during a translation along the fiber, and the result has already 
been found in [35] by supposing that the Lagrange function L 

does not explicitly involve the coordinate iq













0..
iq

L
ei , 

which means that is a cyclic coordinate. 

C. A Rotation in the Fiber  

Consider now an infinitesimal rotation in the fiber: the 
space 3RM   above each point of the database: time. This 
transformation is an element  expj j

i iR    

/ 1j j j
i i i     of the group denoted SO (3) which is 

associated to the following diffeomorphisms: 

 

  ttt

RR





 :
 

and  
 

        timeinconsttqtqtq

MM
ij

j
ijii 







/exp

:~
 (96) 

 

         tqtqtttqt

MRMR

j
ijii 



exp,,

:~




    (97) 

       
The rotation is infinitesimal, and the variation in space 

coordinates 
 

1/  ij
j

ijiii qqqq            (98) 

 

                 tqtqtqtqtttqtqt

TMRTMR

j
iji

j
ijiii   exp,exp,,,

:






                   

(99) 
 

          i
i
Li

i
Lii

L
ii

LL qd
q

dq
q

tqtqttqtqt 










 
 ,,,,

~                   

(100) 
 
Inserting (99) in (100), it becomes 
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         , , , ,i i i i
L L L

ij
j j L Y Li i

t q t q t t q t q t

q q i
q q

  

   

    

  
     

  




 

 

ij
j ji i

Y q q
q q


  

    


                 

(101)

 
 

Contracting (69) by (101) 
 

ij
Y L j ji i

L L
i q q dt

q q
 

  
    




 

 
Using (90) 
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qq

L
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q

L
dtqd

qq

L
q

dtdq
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L
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L
qdtdq

q

L
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l
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l
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j
l

l
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l
ilj

l
ilj

l
i

j
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                                 (102) 
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q

L
dtdq

q

L
d l

l
l

lL 







 


  

 






































dt
q

L
qdtqd

qq

L
qdtdq

qq

L
q

dtqd
qq

L
qdt

q

L
qdtdq

qq

L
qdi

l
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l
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l
lij

l
lij

l
ilj

l
lij

ij
LY
















22

22

                                   (103) 

 
Putting (102) and (103) in (29), we obtain 
  

ij j j
Y L Y L j ji i i i

L L L L
d i i d dq dt dq dt q dt q dt

q q q q
  

    
           

 
 

                          (104) 

 
Inserting (98) in (105), we get 

 

ij jl jl
Y L Y L l l j ji i i i

ij jl ij
l l j ji i i i

L L L L
d i i d q dt q dt q dt q dt

q q q q

L L L L
q q dt q dt q dt

q q q q

    

  

    
         

      
           

 
 

 
 

                                (105) 

 

The rotation is infinitesimal  1:. ijei  , and (105) 

gives 
 

( )ij
Y L Y L j ji i

L L
d i i d q dt q dt

q q
    

   
 


   

     (106) 

 
Using (13) and (20), (106) becomes 
 

 

2

( )ij
Y L Y L j ji i

ij i
ji i

L L
d i i d q dt q dt

t q q

d L d L
dt q dt q

dt q dt q

  

 

 
   

  

    
          


 

 

     (107) 

 
By identification of the two last terms in (107), we find 
  

j
iji qq                           (108) 

 

By using the skew symmetry of ij  
 

 

 

1 1

2 2

1

2

ij ij
Y L Y L j i i j j ii j

ji ext
i j j i

d L L d
d i i d dt q q dt p q p q

dt q q dt

d
dt q p q p M dt

dt

   



  
         

       

 


                       (109) 
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The conserved current in (109) between brackets, will be 

identified to the angular momentum L


 in mechanic whose 
components are:  

 

 ijjiji pqpqL 
2

1                    (110) 

     
This will be contracted 
 

pqL


  
 

and extM


 is only the moment of the external forces which can 
contribute to the rotation of the system. 

In our calculation, the system is invariant in an arbitrary 

rotation about any axis in the space 3R  (i.e. we did not 
impose conditions), which is the case of an isolated system 

0extM


, it follows that the angular momentum L


 is a 
constant of movement, this result has been already found in 
[35]. 

VII. CONCLUSION 

In this work, the multisymplectic model of the fiber bundle 
[22], the Poincaré-Cartan form has been greatly simplified 
using the SOPDE condition for multi-vector fields verifying 
Euler equations. This allows to expand easily the vector fields 
associated to infinitesimal symmetries which gave 
successfully the Noether currents for classical fields, in 
particular, those called Gauge fields and relativistic 
mechanical fields that are in good agreement with the results 
already provided by the analytical method. The remarks that 
can be made are that our geometric model [22] also allowed us 
firstly to distinguish the angular moments of the Gauge field 
obtained during a transformation while these moments are 
gathered in a single expression and are obtained during a 
rotation in the Minkowsky space by the analytic method. 

Secondly, the Lagrangian of the mechanic that has been 

treated in our calculation, is explicit in time and iq ; there was 

no need to pose the conditions 





 



0
t

L  and 













0
iq

L

respectively as other works. The currents obtained naturally 
from the transformations are respectively the energy of the 
system and the momentum. 

And finally, we remark that these symmetries have been 
classified naturally according to the construction of the fiber 
bundle [22]. The Noether currents associated to the 
transformations along the fibers do not depend on the base 
coordinates unlike those associated moving along the base 
space.  
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