Search results for: model order reduction.
9285 Stress and Strain Analysis of Notched Bodies Subject to Non-Proportional Loadings
Authors: A. Ince
Abstract:
In this paper, an analytical simplified method for calculating elasto-plastic stresses strains of notched bodies subject to non-proportional loading paths is discussed. The method was based on the Neuber notch correction, which relates the incremental elastic and elastic-plastic strain energy densities at the notch root and the material constitutive relationship. The validity of the method was presented by comparing computed results of the proposed model against finite element numerical data of notched shaft. The comparison showed that the model estimated notch-root elasto-plastic stresses strains with good accuracy using linear-elastic stresses. The prosed model provides more efficient and simple analysis method preferable to expensive experimental component tests and more complex and time consuming incremental non-linear FE analysis. The model is particularly suitable to perform fatigue life and fatigue damage estimates of notched components subjected to nonproportional loading paths.Keywords: Elasto-plastic, stress-strain, notch analysis, nonprortional loadings, cyclic plasticity, fatigue.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25579284 Management Pattern for Lodging Business in Bang Khonthi Samut Songkram with Sufficient Economy Approach
Authors: Krisada Sungkhamanee
Abstract:
The objectives of this research are to search the management pattern of Bang Khonthi lodging entrepreneurs for sufficient economy ways, to know the threat that affects this sector and design fit arrangement model to sustain their business with Samut Songkram style. What will happen if they do not use this approach? Will they have a financial crisis? The data and information are collected by informal discussions with 8 managers and 400 questionnaires. A mixed methods of both qualitative research and quantitative research are used. Bent Flyvbjerg-s phronesis is utilized for this analysis. Our research will prove that sufficient economy can help small business firms to solve their problems. We think that the results of our research will be a financial model to solve many problems of the entrepreneurs and this way will can be a model for other provinces of Thailand.Keywords: Bang Khonthi, Lodging Business, Sufficient Economy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37249283 Learning and Evaluating Possibilistic Decision Trees using Information Affinity
Authors: Ilyes Jenhani, Salem Benferhat, Zied Elouedi
Abstract:
This paper investigates the issue of building decision trees from data with imprecise class values where imprecision is encoded in the form of possibility distributions. The Information Affinity similarity measure is introduced into the well-known gain ratio criterion in order to assess the homogeneity of a set of possibility distributions representing instances-s classes belonging to a given training partition. For the experimental study, we proposed an information affinity based performance criterion which we have used in order to show the performance of the approach on well-known benchmarks.Keywords: Data mining from uncertain data, Decision Trees, Possibility Theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15159282 Simultaneous Term Structure Estimation of Hazard and Loss Given Default with a Statistical Model using Credit Rating and Financial Information
Authors: Tomohiro Ando, Satoshi Yamashita
Abstract:
The objective of this study is to propose a statistical modeling method which enables simultaneous term structure estimation of the risk-free interest rate, hazard and loss given default, incorporating the characteristics of the bond issuing company such as credit rating and financial information. A reduced form model is used for this purpose. Statistical techniques such as spline estimation and Bayesian information criterion are employed for parameter estimation and model selection. An empirical analysis is conducted using the information on the Japanese bond market data. Results of the empirical analysis confirm the usefulness of the proposed method.Keywords: Empirical Bayes, Hazard term structure, Loss given default.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16679281 Evaluating Emission Reduction Due to a Proposed Light Rail Service: A Micro-Level Analysis
Authors: Saeid Eshghi, Neeraj Saxena, Abdulmajeed Alsultan
Abstract:
Carbon dioxide (CO2) alongside other gas emissions in the atmosphere cause a greenhouse effect, resulting in an increase of the average temperature of the planet. Transportation vehicles are among the main contributors of CO2 emission. Stationary vehicles with initiated motors produce more emissions than mobile ones. Intersections with traffic lights that force the vehicles to become stationary for a period of time produce more CO2 pollution than other parts of the road. This paper focuses on analyzing the CO2 produced by the traffic flow at Anzac Parade Road - Barker Street intersection in Sydney, Australia, before and after the implementation of Light rail transport (LRT). The data are gathered during the construction phase of the LRT by collecting the number of vehicles on each path of the intersection for 15 minutes during the evening rush hour of 1 week (6-7 pm, July 04-31, 2018) and then multiplied by 4 to calculate the flow of vehicles in 1 hour. For analyzing the data, the microscopic simulation software “VISSIM” has been used. Through the analysis, the traffic flow was processed in three stages: before and after implementation of light rail train, and one during the construction phase. Finally, the traffic results were input into another software called “EnViVer”, to calculate the amount of CO2 during 1 h. The results showed that after the implementation of the light rail, CO2 will drop by a minimum of 13%. This finding provides an evidence that light rail is a sustainable mode of transport.Keywords: Carbon dioxide, emission modeling, light rail, microscopic model, traffic flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9469280 Numerical Approach to a Mathematical Modeling of Bioconvection Due to Gyrotactic Micro-Organisms over a Nonlinear Inclined Stretching Sheet
Authors: Madhu Aneja, Sapna Sharma
Abstract:
The water-based bioconvection of a nanofluid containing motile gyrotactic micro-organisms over nonlinear inclined stretching sheet has been investigated. The governing nonlinear boundary layer equations of the model are reduced to a system of ordinary differential equations via Oberbeck-Boussinesq approximation and similarity transformations. Further, the modified set of equations with associated boundary conditions are solved using Finite Element Method. The impact of various pertinent parameters on the velocity, temperature, nanoparticles concentration, density of motile micro-organisms profiles are obtained and analyzed in details. The results show that with the increase in angle of inclination δ, velocity decreases while temperature, nanoparticles concentration, a density of motile micro-organisms increases. Additionally, the skin friction coefficient, Nusselt number, Sherwood number, density number are computed for various thermophysical parameters. It is noticed that increasing Brownian motion and thermophoresis parameter leads to an increase in temperature of fluid which results in a reduction in Nusselt number. On the contrary, Sherwood number rises with an increase in Brownian motion and thermophoresis parameter. The findings have been validated by comparing the results of special cases with existing studies.Keywords: Bioconvection, inclined stretching sheet, Gyrotactic micro-organisms, Brownian motion, thermophoresis, finite element method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7229279 Model the Off-Shore Ocean-Sea Waves to Generate Electric Power by Design of a Converting Device
Authors: Muthana A. M. Jameel Al-Jaboori
Abstract:
In this paper, we will present a mathematical model to design a system able to generate electricity from ocean-sea waves. We will use the basic principles of the transfer of the energy potential of waves in a chamber to force the air inside a vertical or inclined cylindrical column, which is topped by a wind turbine to rotate the electric generator. The present mathematical model included a high number of variables such as the wave, height, width, length, velocity, and frequency, as well as others for the energy cylindrical column, like varying diameters and heights, and the wave chamber shape diameter and height. While for the wells wind turbine the variables included the number of blades, length, width, and clearance, as well as the rotor and tip radius. Additionally, the turbine rotor and blades must be made from the light and strong material for a smooth blade surface. The variables were too vast and high in number. Then the program was run successfully within the MATLAB and presented very good modeling results.Keywords: Water wave, model, wells turbine, MATLAB program, results.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11809278 Machine Learning Techniques for COVID-19 Detection: A Comparative Analysis
Authors: Abeer Aljohani
Abstract:
The COVID-19 virus spread has been one of the extreme pandemics across the globe. It is also referred as corona virus which is a contagious disease that continuously mutates into numerous variants. Currently, the B.1.1.529 variant labeled as Omicron is detected in South Africa. The huge spread of COVID-19 disease has affected several lives and has surged exceptional pressure on the healthcare systems worldwide. Also, everyday life and the global economy have been at stake. Numerous COVID-19 cases have produced a huge burden on hospitals as well as health workers. To reduce this burden, this paper predicts COVID-19 disease based on the symptoms and medical history of the patient. As machine learning is a widely accepted area and gives promising results for healthcare, this research presents an architecture for COVID-19 detection using ML techniques integrated with feature dimensionality reduction. This paper uses a standard University of California Irvine (UCI) dataset for predicting COVID-19 disease. This dataset comprises symptoms of 5434 patients. This paper also compares several supervised ML techniques on the presented architecture. The architecture has also utilized 10-fold cross validation process for generalization and Principal Component Analysis (PCA) technique for feature reduction. Standard parameters are used to evaluate the proposed architecture including F1-Score, precision, accuracy, recall, Receiver Operating Characteristic (ROC) and Area under Curve (AUC). The results depict that Decision tree, Random Forest and neural networks outperform all other state-of-the-art ML techniques. This result can be used to effectively identify COVID-19 infection cases.
Keywords: Supervised machine learning, COVID-19 prediction, healthcare analytics, Random Forest, Neural Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3849277 Research on Weakly Hard Real-Time Constraints and Their Boolean Combination to Support Adaptive QoS
Authors: Xiangbin Zhu
Abstract:
Advances in computing applications in recent years have prompted the demand for more flexible scheduling models for QoS demand. Moreover, in practical applications, partly violated temporal constraints can be tolerated if the violation meets certain distribution. So we need extend the traditional Liu and Lanland model to adapt to these circumstances. There are two extensions, which are the (m, k)-firm model and Window-Constrained model. This paper researches on weakly hard real-time constraints and their combination to support QoS. The fact that a practical application can tolerate some violations of temporal constraint under certain distribution is employed to support adaptive QoS on the open real-time system. The experiment results show these approaches are effective compared to traditional scheduling algorithms.Keywords: Weakly Hard Real-Time, Real-Time, Scheduling, Quality of Service.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15799276 Economic Evaluation of Degradation by Corrosion of an on-Grid Battery Energy Storage System: A Case Study in Algeria Territory
Authors: Fouzia Brihmat
Abstract:
Economic planning models, which are used to build microgrids and Distributed Energy Resources (DER), are the current norm for expressing such confidence. These models often decide both short-term DER dispatch and long-term DER investments. This research investigates the most cost-effective hybrid (photovoltaic-diesel) renewable energy system (HRES) based on Total Net Present Cost (TNPC) in an Algerian Saharan area, which has a high potential for solar irradiation and has a production capacity of 1 GW/h. Lead-acid batteries have been around much longer and are easier to understand, but have limited storage capacity. Lithium-ion batteries last longer, are lighter, but generally more expensive. By combining the advantages of each chemistry, we produce cost-effective high-capacity battery banks that operate solely on AC coupling. The financial implications of this research describe the corrosion process that occurs at the interface between the active material and grid material of the positive plate of a lead-acid battery. The best cost study for the HRES is completed with the assistance of the HOMER Pro MATLAB Link. Additionally, during the course of the project's 20 years, the system is simulated for each time step. In this model, which takes into consideration decline in solar efficiency, changes in battery storage levels over time, and rises in fuel prices above the rate of inflation, the trade-off is that the model is more accurate, but the computation takes longer. We initially utilized the optimizer to run the model without multi-year in order to discover the best system architecture. The optimal system for the single-year scenario is the Danvest generator, which has 760 kW, 200 kWh of the necessary quantity of lead-acid storage, and a somewhat lower Cost Of Energy (COE) of $0.309/kWh. Different scenarios that account for fluctuations in the gasified biomass generator's production of electricity have been simulated, and various strategies to guarantee the balance between generation and consumption have been investigated.
Keywords: Battery, Corrosion, Diesel, Economic planning optimization, Hybrid energy system, HES, Lead-acid battery, Li-ion battery, multi-year planning, microgrid, price forecast, total net present cost, wind.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1659275 Applicability of Overhangs for Energy Saving in Existing High-Rise Housing in Different Climates
Authors: Qiong He, S. Thomas Ng
Abstract:
Upgrading the thermal performance of building envelope of existing residential buildings is an effective way to reduce heat gain or heat loss. Overhang device is a common solution for building envelope improvement as it can cut down solar heat gain and thereby can reduce the energy used for space cooling in summer time. Despite that, overhang can increase the demand for indoor heating in winter due to its function of lowering the solar heat gain. Obviously, overhang has different impacts on energy use in different climatic zones which have different energy demand. To evaluate the impact of overhang device on building energy performance under different climates of China, an energy analysis model is built up in a computer-based simulation program known as DesignBuilder based on the data of a typical high-rise residential building. The energy simulation results show that single overhang is able to cut down around 5% of the energy consumption of the case building in the stand-alone situation or about 2% when the building is surrounded by other buildings in regions which predominantly rely on space cooling though it has no contribution to energy reduction in cold region. In regions with cold summer and cold winter, adding overhang over windows can cut down around 4% and 1.8% energy use with and without adjoining buildings, respectively. The results indicate that overhang might not an effective shading device to reduce the energy consumption in the mixed climate or cold regions.Keywords: Overhang, energy analysis, computer-based simulation, high-rise residential building, mutual shading, climate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14489274 Study on the Mechanical Behavior of the Varactor of a Micro-Phase Shifter
Authors: Mehrdad Nouri Khajavi, Sajjad Ahoui Ghazvin, Ghader Rezazadeh, Mohammad Fathalilou
Abstract:
In this paper static and dynamic response of a varactor of a micro-phase shifter to DC, step DC and AC voltages have been studied. By presenting a mathematical modeling Galerkin-based step by step linearization method (SSLM) and Galerkin-based reduced order model have been used to solve the governing static and dynamic equations, respectively. The calculated static and dynamic pull-in voltages have been validated by previous experimental and theoretical results and a good agreement has been achieved. Then the frequency response and phase diagram of the system has been studied. It has been shown that applying the DC voltage shifts down the phase diagram and frequency response. Also increasing the damping ratio shifts up the phase diagram.Keywords: MEMS, Phase Shifter, Pull-in Voltage, PhaseDiagram
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16869273 An Enhanced Particle Swarm Optimization Algorithm for Multiobjective Problems
Authors: Houda Abadlia, Nadia Smairi, Khaled Ghedira
Abstract:
Multiobjective Particle Swarm Optimization (MOPSO) has shown an effective performance for solving test functions and real-world optimization problems. However, this method has a premature convergence problem, which may lead to lack of diversity. In order to improve its performance, this paper presents a hybrid approach which embedded the MOPSO into the island model and integrated a local search technique, Variable Neighborhood Search, to enhance the diversity into the swarm. Experiments on two series of test functions have shown the effectiveness of the proposed approach. A comparison with other evolutionary algorithms shows that the proposed approach presented a good performance in solving multiobjective optimization problems.
Keywords: Particle swarm optimization, migration, variable neighborhood search, multiobjective optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8099272 Matching Facial Images using Age Related Morphing Changes
Authors: Udeni Jayasinghe, Anuja Dharmaratne
Abstract:
Each year many people are reported missing in most of the countries in the world owing to various reasons. Arrangements have to be made to find these people after some time. So the investigating agencies are compelled to make out these people by using manpower. But in many cases, the investigations carried out to find out an absconding for a long time may not be successful. At a time like that it may be difficult to identify these people by examining their old photographs, because their facial appearance might have changed mainly due to the natural aging process. On some occasions in forensic medicine if a dead body is found, investigations should be held to make sure that this corpse belongs to the same person disappeared some time ago. With the passage of time the face of the person might have changed and there should be a mechanism to reveal the person-s identity. In order to make this process easy, we must guess and decide as to how he will look like by now. To address this problem this paper presents a way of synthesizing a facial image with the aging effects.
Keywords: Cranio-facial growth model, eigenfaces, eigenvectors, Face Anthropometry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17419271 A Neural Model of Object Naming
Authors: Alessio Plebe
Abstract:
One astonishing capability of humans is to recognize thousands of different objects visually, and to learn the semantic association between those objects and words referring to them. This work is an attempt to build a computational model of such capacity,simulating the process by which infants learn how to recognize objects and words through exposure to visual stimuli and vocal sounds.One of the main fact shaping the brain of a newborn is that lights and colors come from entities of the world. Gradually the visual system learn which light sensations belong to same entities, despite large changes in appearance. This experience is common between humans and several other mammals, like non-human primates. But humans only can recognize a huge variety of objects, most manufactured by himself, and make use of sounds to identify and categorize them. The aim of this model is to reproduce these processes in a biologically plausible way, by reconstructing the essential hierarchy of cortical circuits on the visual and auditory neural paths.
Keywords: Auditory cortex, object recognition, self-organizingmaps
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13859270 Classification of Construction Projects
Authors: M. Safa, A. Sabet, S. MacGillivray, M. Davidson, K. Kaczmarczyk, C. T. Haas, G. E. Gibson, D. Rayside
Abstract:
In order to address construction project requirements and specifications, scholars and practitioners need to establish taxonomy according to a scheme that best fits their need. While existing characterization methods are continuously being improved, new ones are devised to cover project properties which have not been previously addressed. One such method, the Project Definition Rating Index (PDRI), has received limited consideration strictly as a classification scheme. Developed by the Construction Industry Institute (CII) in 1996, the PDRI has been refined over the last two decades as a method for evaluating a project's scope definition completeness during front-end planning (FEP). The main contribution of this study is a review of practical project classification methods, and a discussion of how PDRI can be used to classify projects based on their readiness in the FEP phase. The proposed model has been applied to 59 construction projects in Ontario, and the results are discussed.Keywords: Project classification, project definition rating index (PDRI), project goals alignment, risk.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 51949269 A Frequency Dependence of the Phase Field Model in Laminar Boundary Layer with Periodic Perturbations
Authors: Yasuo Obikane
Abstract:
The frequency dependence of the phase field model(PFM) is studied. A simple PFM is proposed, and is tested in a laminar boundary layer. The Blasius-s laminar boundary layer solution on a flat plate is used for the flow pattern, and several frequencies are imposed on the PFM, and the decay times of the interfaces are obtained. The computations were conducted for three cases: 1) no-flow, and 2) a half ball on the laminar boundary layer, 3) a line of mass sources in the laminar boundary layer. The computations show the decay time becomes shorter as the frequency goes larger, and also show that it is sensitive to both background disturbances and surface tension parameters. It is concluded that the proposed simple PFM can describe the properties of decay process, and could give the fundamentals for the decay of the interface in turbulent flows.Keywords: Phase field model, two phase flows, Laminarboundary Layer
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15099268 Digital Transformation as the Subject of the Knowledge Model of the Discursive Space
Authors: Rafal Maciag
Abstract:
Due to the development of the current civilization, one must create suitable models of its pervasive massive phenomena. Such a phenomenon is the digital transformation, which has a substantial number of disciplined, methodical interpretations forming the diversified reflection. This reflection could be understood pragmatically as the current temporal, a local differential state of knowledge. The model of the discursive space is proposed as a model for the analysis and description of this knowledge. Discursive space is understood as an autonomous multidimensional space where separate discourses traverse specific trajectories of what can be presented in multidimensional parallel coordinate system. Discursive space built on the world of facts preserves the complex character of that world. Digital transformation as a discursive space has a relativistic character that means that at the same time, it is created by the dynamic discourses and these discourses are molded by the shape of this space.
Keywords: Knowledge, digital transformation, discourse, discursive space, complexity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6579267 Tree Sign Patterns of Small Order that Allow an Eventually Positive Matrix
Authors: Ber-Lin Yu, Jie Cui, Hong Cheng, Zhengfeng Yu
Abstract:
A sign pattern is a matrix whose entries belong to the set {+,−, 0}. An n-by-n sign pattern A is said to allow an eventually positive matrix if there exist some real matrices A with the same sign pattern as A and a positive integer k0 such that Ak > 0 for all k ≥ k0. It is well known that identifying and classifying the n-by-n sign patterns that allow an eventually positive matrix are posed as two open problems. In this article, the tree sign patterns of small order that allow an eventually positive matrix are classified completely.Keywords: Eventually positive matrix, sign pattern, tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12689266 A Tutorial on Dynamic Simulation of DC Motor and Implementation of Kalman Filter on a Floating Point DSP
Authors: Padmakumar S., Vivek Agarwal, Kallol Roy
Abstract:
With the advent of inexpensive 32 bit floating point digital signal processor-s availability in market, many computationally intensive algorithms such as Kalman filter becomes feasible to implement in real time. Dynamic simulation of a self excited DC motor using second order state variable model and implementation of Kalman Filter in a floating point DSP TMS320C6713 is presented in this paper with an objective to introduce and implement such an algorithm, for beginners. A fractional hp DC motor is simulated in both Matlab® and DSP and the results are included. A step by step approach for simulation of DC motor in Matlab® and “C" routines in CC Studio® is also given. CC studio® project file details and environmental setting requirements are addressed. This tutorial can be used with 6713 DSK, which is based on floating point DSP and CC Studio either in hardware mode or in simulation mode.
Keywords: DC motor, DSP, Dynamic simulation, Kalman Filter
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30159265 Improving Air Temperature Prediction with Artificial Neural Networks
Authors: Brian A. Smith, Ronald W. McClendon, Gerrit Hoogenboom
Abstract:
The mitigation of crop loss due to damaging freezes requires accurate air temperature prediction models. Previous work established that the Ward-style artificial neural network (ANN) is a suitable tool for developing such models. The current research focused on developing ANN models with reduced average prediction error by increasing the number of distinct observations used in training, adding additional input terms that describe the date of an observation, increasing the duration of prior weather data included in each observation, and reexamining the number of hidden nodes used in the network. Models were created to predict air temperature at hourly intervals from one to 12 hours ahead. Each ANN model, consisting of a network architecture and set of associated parameters, was evaluated by instantiating and training 30 networks and calculating the mean absolute error (MAE) of the resulting networks for some set of input patterns. The inclusion of seasonal input terms, up to 24 hours of prior weather information, and a larger number of processing nodes were some of the improvements that reduced average prediction error compared to previous research across all horizons. For example, the four-hour MAE of 1.40°C was 0.20°C, or 12.5%, less than the previous model. Prediction MAEs eight and 12 hours ahead improved by 0.17°C and 0.16°C, respectively, improvements of 7.4% and 5.9% over the existing model at these horizons. Networks instantiating the same model but with different initial random weights often led to different prediction errors. These results strongly suggest that ANN model developers should consider instantiating and training multiple networks with different initial weights to establish preferred model parameters.Keywords: Decision support systems, frost protection, fruit, time-series prediction, weather modeling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27259264 Nanostructured Pt/MnO2 Catalysts and Their Performance for Oxygen Reduction Reaction in Air Cathode Microbial Fuel Cell
Authors: Maksudur Rahman Khan, Kar Min Chan, Huei Ruey Ong, Chin Kui Cheng, Wasikur Rahman
Abstract:
Microbial fuel cells (MFCs) represent a promising technology for simultaneous bioelectricity generation and wastewater treatment. Catalysts are significant portions of the cost of microbial fuel cell cathodes. Many materials have been tested as aqueous cathodes, but air-cathodes are needed to avoid energy demands for water aeration. The sluggish oxygen reduction reaction (ORR) rate at air cathode necessitates efficient electrocatalyst such as carbon supported platinum catalyst (Pt/C) which is very costly. Manganese oxide (MnO2) was a representative metal oxide which has been studied as a promising alternative electrocatalyst for ORR and has been tested in air-cathode MFCs. However the single MnO2 has poor electric conductivity and low stability. In the present work, the MnO2 catalyst has been modified by doping Pt nanoparticle. The goal of the work was to improve the performance of the MFC with minimum Pt loading. MnO2 and Pt nanoparticles were prepared by hydrothermal and sol gel methods, respectively. Wet impregnation method was used to synthesize Pt/MnO2 catalyst. The catalysts were further used as cathode catalysts in air-cathode cubic MFCs, in which anaerobic sludge was inoculated as biocatalysts and palm oil mill effluent (POME) was used as the substrate in the anode chamber. The asprepared Pt/MnO2 was characterized comprehensively through field emission scanning electron microscope (FESEM), X-Ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV) where its surface morphology, crystallinity, oxidation state and electrochemical activity were examined, respectively. XPS revealed Mn (IV) oxidation state and Pt (0) nanoparticle metal, indicating the presence of MnO2 and Pt. Morphology of Pt/MnO2 observed from FESEM shows that the doping of Pt did not cause change in needle-like shape of MnO2 which provides large contacting surface area. The electrochemical active area of the Pt/MnO2 catalysts has been increased from 276 to 617 m2/g with the increase in Pt loading from 0.2 to 0.8 wt%. The CV results in O2 saturated neutral Na2SO4 solution showed that MnO2 and Pt/MnO2 catalysts could catalyze ORR with different catalytic activities. MFC with Pt/MnO2 (0.4 wt% Pt) as air cathode catalyst generates a maximum power density of 165 mW/m3, which is higher than that of MFC with MnO2 catalyst (95 mW/m3). The open circuit voltage (OCV) of the MFC operated with MnO2 cathode gradually decreased during 14 days of operation, whereas the MFC with Pt/MnO2 cathode remained almost constant throughout the operation suggesting the higher stability of the Pt/MnO2 catalyst. Therefore, Pt/MnO2 with 0.4 wt% Pt successfully demonstrated as an efficient and low cost electrocatalyst for ORR in air cathode MFC with higher electrochemical activity, stability and hence enhanced performance.
Keywords: Microbial fuel cell, oxygen reduction reaction, Pt/MnO2, palm oil mill effluent, polarization curve.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35069263 Enhancing Spatial Interpolation: A Multi-Layer Inverse Distance Weighting Model for Complex Regression and Classification Tasks in Spatial Data Analysis
Authors: Yakin Hajlaoui, Richard Labib, Jean-Franc¸ois Plante, Michel Gamache
Abstract:
This study presents the Multi-Layer Inverse Distance Weighting Model (ML-IDW), inspired by the mathematical formulation of both multi-layer neural networks (ML-NNs) and Inverse Distance Weighting model (IDW). ML-IDW leverages ML-NNs’ processing capabilities, characterized by compositions of learnable non-linear functions applied to input features, and incorporates IDW’s ability to learn anisotropic spatial dependencies, presenting a promising solution for nonlinear spatial interpolation and learning from complex spatial data. We employ gradient descent and backpropagation to train ML-IDW. The performance of the proposed model is compared against conventional spatial interpolation models such as Kriging and standard IDW on regression and classification tasks using simulated spatial datasets of varying complexity. Our results highlight the efficacy of ML-IDW, particularly in handling complex spatial dataset, exhibiting lower mean square error in regression and higher F1 score in classification.
Keywords: Deep Learning, Multi-Layer Neural Networks, Gradient Descent, Spatial Interpolation, Inverse Distance Weighting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 399262 Effect of Sand Particle Transportation in Oil and Gas Pipeline Erosion
Authors: Christopher Deekia Nwimae, Nigel Simms, Liyun Lao
Abstract:
Erosion in a pipe bends caused by particles is a major concern in the oil and gas fields and might cause breakdown to production equipment. This work investigates the effect of sand particle transport in an elbow using computational fluid dynamics (CFD) approach. Two-way coupled Euler-Lagrange and discrete phase model is employed to calculate the air/solid particle flow in the elbow. Generic erosion model in Ansys fluent and three particle rebound models are used to predict the erosion rate on the 90° elbows. The model result is compared with experimental data from the open literature validating the CFD-based predictions which reveals that due to the sand particles impinging on the wall of the elbow at high velocity, a point on the pipe elbow were observed to have started turning red due to velocity increase and the maximum erosion locations occur at 48°.
Keywords: Erosion, prediction, elbow, computational fluid dynamics, CFD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5019261 Existence of Solution for Singular Two-point Boundary Value Problem of Second-order Differential Equation
Authors: Xiguang Li
Abstract:
In this paper, by constructing a special set and utilizing fixed point theory in coin, we study the existence of solution of singular two point’s boundary value problem for second-order differential equation, which improved and generalize the result of related paper.
Keywords: Singular differential equation, boundary value problem, coin, fixed point theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11319260 Unsteady Rayleigh-Bénard Convection of Nanoliquids in Enclosures
Authors: P. G. Siddheshwar, B. N. Veena
Abstract:
Rayleigh-B´enard convection of a nanoliquid in shallow, square and tall enclosures is studied using the Khanafer-Vafai-Lightstone single-phase model. The thermophysical properties of water, copper, copper-oxide, alumina, silver and titania at 3000 K under stagnant conditions that are collected from literature are used in calculating thermophysical properties of water-based nanoliquids. Phenomenological laws and mixture theory are used for calculating thermophysical properties. Free-free, rigid-rigid and rigid-free boundary conditions are considered in the study. Intractable Lorenz model for each boundary combination is derived and then reduced to the tractable Ginzburg-Landau model. The amplitude thus obtained is used to quantify the heat transport in terms of Nusselt number. Addition of nanoparticles is shown not to alter the influence of the nature of boundaries on the onset of convection as well as on heat transport. Amongst the three enclosures considered, it is found that tall and shallow enclosures transport maximum and minimum energy respectively. Enhancement of heat transport due to nanoparticles in the three enclosures is found to be in the range 3% - 11%. Comparison of results in the case of rigid-rigid boundaries is made with those of an earlier work and good agreement is found. The study has limitations in the sense that thermophysical properties are calculated by using various quantities modelled for static condition.Keywords: Enclosures, free-free, rigid-rigid and rigid-free boundaries, Ginzburg-Landau model, Lorenz model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8549259 Simulation for Input-Output Energy Structure in Agriculture: Bangladesh
Authors: M. S. Alam, M. R. Alam, Nusrat Jahan Imu
Abstract:
This paper presents a computer simulation model based on system dynamics methodology for analyzing the dynamic characteristics of input energy structure in agriculture and Bangladesh is used here as a case study for model validation. The model provides an input energy structure linking the major energy flows with human energy and draft energy from cattle as well as tractors and/or power tillers, irrigation, chemical fertilizer and pesticide. The evaluation is made in terms of different energy dependent indicators. During the simulation period, the energy input to agriculture increased from 6.1 to 19.15 GJ/ha i.e. 2.14 fold corresponding to energy output in terms of food, fodder and fuel increase from 71.55 to 163.58 GJ/ha i.e. 1.28 fold from the base year. This result indicates that the energy input in Bangladeshi agricultural production is increasing faster than the energy output. Problems such as global warming, nutrient loading and pesticide pollution can associate with this increasing input. For an assessment, a comparative statement of input energy use in agriculture of developed countries (DCs) and least developed countries (LDCs) including Bangladesh has been made. The performance of the model is found satisfactory to analyze the agricultural energy system for LDCs
Keywords: Agriculture, energy indicator, system dynamics, energy flows.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25729258 Evaluation of Model-Based Code Generation for Embedded Systems–Mature Approach for Development in Evolution
Authors: Nikolay P. Brayanov, Anna V. Stoynova
Abstract:
Model-based development approach is gaining more support and acceptance. Its higher abstraction level brings simplification of systems’ description that allows domain experts to do their best without particular knowledge in programming. The different levels of simulation support the rapid prototyping, verifying and validating the product even before it exists physically. Nowadays model-based approach is beneficial for modelling of complex embedded systems as well as a generation of code for many different hardware platforms. Moreover, it is possible to be applied in safety-relevant industries like automotive, which brings extra automation of the expensive device certification process and especially in the software qualification. Using it, some companies report about cost savings and quality improvements, but there are others claiming no major changes or even about cost increases. This publication demonstrates the level of maturity and autonomy of model-based approach for code generation. It is based on a real live automotive seat heater (ASH) module, developed using The Mathworks, Inc. tools. The model, created with Simulink, Stateflow and Matlab is used for automatic generation of C code with Embedded Coder. To prove the maturity of the process, Code generation advisor is used for automatic configuration. All additional configuration parameters are set to auto, when applicable, leaving the generation process to function autonomously. As a result of the investigation, the publication compares the quality of generated embedded code and a manually developed one. The measurements show that generally, the code generated by automatic approach is not worse than the manual one. A deeper analysis of the technical parameters enumerates the disadvantages, part of them identified as topics for our future work.Keywords: Embedded code generation, embedded C code quality, embedded systems, model-based development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10099257 Application of Finite Dynamic Programming to Decision Making in the Use of Industrial Residual Water Treatment Plants
Authors: Oscar Vega Camacho, Andrea Vargas Guevara, Ellery Rowina Ariza
Abstract:
This paper presents the application of finite dynamic programming, specifically the "Markov Chain" model, as part of the decision making process of a company in the cosmetics sector located in the vicinity of Bogota DC. The objective of this process was to decide whether the company should completely reconstruct its wastewater treatment plant or instead optimize the plant through the addition of equipment. The goal of both of these options was to make the required improvements in order to comply with parameters established by national legislation regarding the treatment of waste before it is released into the environment. This technique will allow the company to select the best option and implement a solution for the processing of waste to minimize environmental damage and the acquisition and implementation costs.
Keywords: Decision making, Markov chain, optimization, wastewater.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20149256 Brain MRI Segmentation and Lesions Detection by EM Algorithm
Authors: Mounira Rouaïnia, Mohamed Salah Medjram, Noureddine Doghmane
Abstract:
In Multiple Sclerosis, pathological changes in the brain results in deviations in signal intensity on Magnetic Resonance Images (MRI). Quantitative analysis of these changes and their correlation with clinical finding provides important information for diagnosis. This constitutes the objective of our work. A new approach is developed. After the enhancement of images contrast and the brain extraction by mathematical morphology algorithm, we proceed to the brain segmentation. Our approach is based on building statistical model from data itself, for normal brain MRI and including clustering tissue type. Then we detect signal abnormalities (MS lesions) as a rejection class containing voxels that are not explained by the built model. We validate the method on MR images of Multiple Sclerosis patients by comparing its results with those of human expert segmentation.Keywords: EM algorithm, Magnetic Resonance Imaging, Mathematical morphology, Markov random model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2166