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Abstract—This paper investigates the issue of building decision
trees from data with imprecise class values where imprecision is
encoded in the form of possibility distributions. The Information
Affinity similarity measure is introduced into the well-known gain
ratio criterion in order to assess the homogeneity of a set of
possibility distributions representing instances’s classes belonging to
a given training partition. For the experimental study, we proposed an
information affinity based performance criterion which we have used
in order to show the performance of the approach on well-known
benchmarks.

Keywords—Data mining from uncertain data, Decision Trees,
Possibility Theory.

I. INTRODUCTION

Machine learning and data mining researches have rapidly
emerged in the last decade. Especially, classification is
considered as one of the most successful branches of
Artificial Intelligence and it is playing a more and more
important role in real-world applications.

Classification tasks are ensured by several approaches such
as: discriminant analysis, artificial neural networks, k-nearest
neighbors, Bayesian networks, decision trees. etc. The latter,
namely, decision trees, is considered as one of the most
popular classification techniques. They are able to represent
knowledge in a flexible and easy form which justifies their
use in decision support systems, intrusion detection systems,
medical diagnosis, etc.

For many real-world problems and particulary for
classification problems, imprecision is often inherent in
modeling these applications and should be considered when
building classifiers. For example, for some instances, an
expert or a sensor may be unable to give the exact class
value: an expert in ballistics in the scientific police who is
unable to provide the exact type of a gun used in a crime, a
mechanic who is unable to provide the exact fault of an engine,
a doctor who cannot specify the exact disease of a patient, etc.

An interesting real example emphasizing the problem
of having imprecise class labels is the one given in [5].
It consists in detecting certain transient phenomena (e.g.
k-complexes and delta waves) in electroencephalogram (EEG)
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data. Such phenomena are usually difficult to detect, hence
doctors are not always able to recognize them with full
certainty. Consequently, it may be more easy for doctors to
assess the possibility that certain phenomena are present in
the data.

Hence, in these different examples, the expert can provide
imprecise or uncertain classifications expressed in the form
of a ranking on the possible classes. Obviously, rejecting
these pieces of information in a learning process is not a
good practice. A suitable theory dealing with such situations
is possibility theory which is a non-classical theory of
uncertainty proposed by [18] and developed by [6].

Let us note that some decision tree approaches have already
dealt with the problem of uncertainty and imprecision by
using other uncertainty formalisms. We can mention, fuzzy
decision trees induced from instances with vaguely defined
linguistic attributes and classes [11], [12], [17] and belief
decision trees induced from data with partially defined classes
presented in the form of basic belief assignments (belief
decision trees) [4], [7].

In this paper, we propose a new decision tree approach
that allows the induction of decision trees from imprecisely
labeled instances, i.e., whose class labels are given in the
form of possibility distributions. We introduced the concept
of similarity into the attribute selection step of the proposed
approach.

It is important to mention that existing possibilistic decision
trees do not deal with uncertainty in classes, except, the work
we have proposed in [10] using the concept of non-specificity
in building possibilistic decision trees. A work proposed
by Borgelt and al. [3] deals with crisp (standard) training
sets: the authors encode the frequency distributions as
possibility distributions (an interpretation which is based on
the context model of possibility theory [3]) in order to define
a possibilistic attribute selection measure. The possibilistic
decision tree approach proposed by Hüllermeier [8] uses a
possibilistic branching within the lazy decision tree technique.
Again, this work does not deal with any uncertainty in the
classes of the training objects. A work by Ben Amor et
al. [1] have dealt with the classification of objects having
possibilistic uncertain attribute values within the decision tree
technique.
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This paper is organized as follows. Section 2 gives necessary
background on possibility theory. Section 3 describes some
basics of decision trees. Then, in Section 4, we present our
approach, so-called Aff-PDT. Section 5 presents and analyzes
experimental results carried out on modified versions of com-
monly used data sets from the U.C.I. repository [14]. Finally,
Section 6 concludes the paper.

II. POSSIBILITY THEORY

Possibility theory represents a non-classical uncertainty
theory, first introduced by Zadeh [18] and then developed by
several authors (e.g., Dubois and Prade [6]). In this section,
we will give a brief recalling on possibility theory.

Possibility distribution
Given a universe of discourse Ω = {ω1, ω2, ..., ωn}, a
fundamental concept of possibility theory is the possibility
distribution denoted by π. π corresponds to a function which
associates to each element ωi from the universe of discourse
Ω a value from a bounded and linearly ordered valuation set
(L,<). This value is called a possibility degree: it encodes our
knowledge on the real world. Note that, in possibility theory,
the scale can be numerical (e.g. L=[0,1]): in this case we
have numerical possibility degrees from the interval [0,1] and
hence we are dealing with the quantitative setting of the theory.

By convention, π(ωi) = 1 means that it is fully possible that
ωi is the real world, π(ωi) = 0 means that ωi cannot be the
real world (is impossible). Flexibility is modeled by allowing
to give a possibility degree from ]0,1[. In possibility theory,
extreme cases of knowledge are given by:

-Complete knowledge: ∃ωi, π(ωi) = 1 and ∀ ωj �=
ωi, π(ωj) = 0.

- Total ignorance: ∀ ωi ∈ Ω, π(ωi) = 1 (all values in Ω
are possible).

Possibility and Necessity measures
From a possibility distribution, two dual measures
can be derived: Possibility and Necessity measures.
Given a possibility distribution π on the universe of
discourse Ω, the corresponding possibility and necessity
measures of any event A ⊆ 2Ω are, respectively,
determined by the formulas: Π(A) = maxω∈A π(ω)
and N(A) = minω/∈A (1− π(ω)) = 1−Π(A).

Π(A) evaluates at which level A is consistent with our
knowledge represented by π while N(A) evaluates at which
level A is certainly implied by our knowledge represented by
π.

Normalization
A possibility distribution π is said to be normalized if there
exists at least one state ωi ∈ Ω which is totally possible. In
the case of sub-normalized π,

Inc(π) = 1−max
ω∈Ω
{π(ω)} (1)

is called the inconsistency degree of π. It is clear that,
for normalized π, maxω∈Ω{π(ω)} = 1, hence Inc(π)=0.

The measure Inc is very useful in assessing the degree of
conflict between two distributions π1 and π2 which is given
by Inc(π1 ∧ π2). We take the ∧ as the minimum operator.
Obviously, when π1 ∧ π2 gives a sub-normalized possibility
distribution, it indicates that there is a conflict between π1

and π2 (Inc(π1 ∧ π2) ∈]0, 1]).

Information Affinity: a possibilistic similarity measure
Comparing pieces of uncertain information given by several
sources has attracted a lot of attention for a long time. This
could be ensured by the use of similarity indexes. After a
deep study of existing possibilistic similarity measures, we
have proposed in a recent work [9], a new similarity index
satisfying interesting properties (non-negativity, upper bound
and non-degeneracy, lower bound, symmetry, inclusion,
permutation).

The information affinity index, denoted by InfoAff takes
into account a classical informative distance, namely, the
Manhattan distance along with the well known inconsistency
measure. InfoAff is applicable to any pair of normalized
possibility distributions.

Definition 1: Let π1 and π2 be two possibility distributions
on the same universe of discourse Ω. We define a measure
InfoAff(π1, π2) as follows:

InfoAff(π1, π2) = 1− d(π1, π2) + Inc(π1 ∧ π2)
2

(2)

where d(π1, π2) = 1
n

∑n
i=1 |π1(ωi) − π2(ωi)| represents the

Manhattan distance between π1 and π2 and Inc(π1∧π2) tells
us about the degree of conflict between the two distributions
(see Equation (1)).
Two possibility distributions π1 and π2 are said to have a
strong affinity (resp. weak affinity) if InfoAff(π1, π2) = 1
(resp. InfoAff(π1, π2) = 0).

For sake of simplicity, in the rest of the paper, a possibility
distribution π on a finite set Ω = {ω1, ω2, ..., ωn} will be
denoted by π[π(ω1), π(ω2), ..., π(ωn)].

III. DECISION TREES

Decision trees, also called classification trees, are graphical
models with a tree-like structure: they are composed of three
basic elements: decision nodes corresponding to attributes,
edges or branches which correspond to the different possible
attribute values. The third component consists of leaves
including objects that typically belong to the same class or
that are very similar.

Several algorithms for building decision trees have been
developed. The most popular and applied ones are: ID3
[15] and its successor C4.5 "the state-of-the-art" algorithm
developed by Quinlan [16]. These algorithms have many
components to be defined:

a) Attribute selection measure generally based on information
theory, serves as a criterion in choosing among a list of
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candidate attributes at each decision node, the attribute
that generates partitions where objects are distributed less
randomly, with the aim of constructing the smallest tree
among those consistent with the data. The well-known
measure used in the C4.5 algorithm of Quinlan [16] is the
gain ratio.

Given an attribute Ak, the information gain relative to Ak

is defined as follows:

Gain(T,Ak) = E(T ) − EAk
(T ) (3)

where

E(T ) = −
n∑

i=1

n(Ci, T )
|T | log2

n(Ci, T )
|T | (4)

and

EAk
(T ) =

∑
v∈D(Ak)

|TAk
v |
|T | E(TAk

v ) (5)

n(Ci,T) denotes the number of objects in the training set T
belonging to the class Ci, D(Ak) denotes the finite domain
of the attribute Ak and |TAk

v | denotes the cardinality of the
set of objects for which the attribute Ak has the value v. Note
that n(Ci,T )

|T | corresponds to the probability of the class Ci in
T . Thus, E(T ) corresponds to the Shannon entropy of the set
T . The gain ratio is given by:

Gr(T,Ak) =
Gain(T,Ak)

SplitInfo(T,Ak)
(6)

where SplitInfo(T,Ak) represents the potential informa-
tion generated by dividing T into n subsets. It is given by:

SplitInfo(T,Ak) = −
∑

v∈D(Ak)

|TAk
v |
|T | log2

|TAk
v |
|T | (7)

b) Partitioning strategy consisting in partitioning the
training set according to all possible attribute values (for
symbolic attributes) which leads to the generation of one
partition for each possible value of the selected attribute. For
continuous attributes, a discretization step is needed.

c) Stopping criteria stopping the partitioning process.
Generally, we stop the partitioning if all the remaining objects
belong to only one class, then the node is declared as a leaf
labeled with this class value. We, also, stop growing the tree
if there is no further attribute to test. In this case, we take the
majority class as the leaf’s label.

IV. AFFINITY BASED POSSIBILISTIC DECISION TREES

An affinity based possibilistic decision tree (Aff-PDT) has
the same representation of a standard decision tree, i.e., it is
composed of decision nodes for testing attributes, branches
specifying attribute values and leaves dealing with classes of
the training set.

A. Classification from imperfect data

As models of the real world, databases, or more specifically,
training sets are often permeated with forms of imperfections,
including imprecision and uncertainty. The topic of imperfect
databases is gaining more and more attention the last years
[13] since commercial database management systems are not
able to deal with such kind of information.

Examples of imperfect class values include the exact
type of an attack in an intrusion detection system, the exact
cancer class of a patient in cancer diagnosis applications,
the exact location or type of a detected aerial engine in
military applications, etc. These imperfections might result
from using unreliable information sources, such as faulty
reading instruments, or input forms that have been filled out
incorrectly (intentionally or inadvertently).

In order to deal with such kind of imperfection, in this work,
we used a convenient mathematical model, namely, possibility
theory [6], [18]. More formally, a possibility degree will be
assigned to each possible class value indicating the possibility
that the instance belongs to a given class [5]. These possibility
degrees can be obtained from direct expert’s elicitation, i.e.,
each expert is asked to quantify by a real number between 0
and 1 the possibility that a training instance belongs to each
one of the different classes of the problem.

B. Building procedure

In the possibilistic setting, instances classes in the training
set will be represented by possibility distributions over the
different classes of the problem instead of exact classes.
Hence, one must find a way to assess homogeneity of a given
training partition. The idea consists in measuring the entropy
of each partition weighted by the mean similarity degree of
the possibility distributions in the corresponding partition.
Let us define the basic components for the Aff-PDT approach:

a) Meta-classes and wrapper possibility distributions
Given a training set T (the initial partition) containing n
instances and given the set of attributes, let us denote by πi the
possibility distribution labeling the class of the instance i in T .

In standard decision trees, homogeneity of a partition
is determined by the entropy of that partition. However,
in our context, πi’s are most of the time very different,
so it has no sense to directly compute their frequencies in
order to determine the entropy of T (the entropy will be
equal to 1). Moreover, one cannot simply view each πi as
a new class. First, because the number of classes will be
exponential. Second, there are similar distributions that should
be considered as globally expressing same or similar pieces
of information. For instance, we cannot simply consider the
distributions [1, 0.2] and [1, 0.21] as two different exclusive
classes, but we will consider them as similar.

Hence, we need a finite set of Meta-Classes MCj=1..m.
Each MCj corresponds to a meta-class which gathers together
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all possibility distributions similar to a predefined wrapper
possibility distribution (say WDj). More precisely, wrapper
possibility distributions are binary possibility distributions
(i.e., ∀ω ∈ Ω, π(ω) ∈ {0, 1}) representing special cases of
complete knowledge, partial ignorance and total ignorance
representing the set of reference distributions.

After specifying the set of Meta-Classes MC,
we will assign to each possibility distribution πi

labeling an instance i a meta-class MCj such that:
MCj = arg maxm

j=1{InfoAff(πi,WDj)} where m is the
total number of meta-classes and InfoAff corresponds to
the information Affinity index (Equation (2)). Note that, as in
standard decision trees, ties are broken arbitrarily.

b) Affinity-Gain ratio
After mapping the different πi’s to their corresponding MCj’s
, it becomes possible to assess the discriminative power of
each attribute in partitioning a set into homogeneous subsets
by extending the well-known gain ratio criterion [16]. First,
we define the Affinity-Entropy Gain (AGain) of an attribute
Ak by:

AGain(T,Ak) = AE(T ) − AEAk
(T ) (8)

where

AE(T ) = −
m∑

j=1

(AvgAff(MCj)) ∗ (
|MCj |
|T | log2

|MCj |
|T | )

(9)
and

AEAk
(T ) =

∑
v∈D(Ak)

|TAk
v |
|T | AE(TAk

v ) (10)

where |MCj | in Equation (9) denotes the number of objects in
the training set T belonging to the meta-class MCj . Obviously,
to compensate for the information loss resulting from grouping
resemblant πi’s into their corresponding MCj’s, we have in-
troduced the AvgAff(MCj) factor which corresponds to the
average similarity between the original possibility distributions
πp=1..n assigned to MCj :

AvgAff(MCj) =

∑n−1
p=1

∑n
q=p+1 InfoAff(πp, πq)

n∗(n−1)
2

(11)

Proposition 1: When dealing with crisp training sets, i.e.,
with precise classes (MCj ≡ Cj), we will always have
AvgAff(MCj) = 1 and |MCj | will correspond to number
of instances labeled by the same class Cj , thus we recover the
standard C4.5 approach.

Then, the Affinity-gain ratio is expressed in the same way
as the classical gain ratio using SplitInfo (Equation (7)):

AGr(T,Ak) =
AGain(T,Ak)

SplitInfo(T,Ak)
(12)

Obviously, the attribute maximizing AGr will be assigned
to the decision node at hand.

c) Partitioning strategy
Since we only deal with nominal attributes, the partitioning

strategy will be the same as with standard decision trees.

d) Stopping criteria
We will stop growing the tree if:

1. There is no further attribute to test.
2.AGain ≤ 0, i.e., no information is gained.
3. |Tp|=0, i.e., the generated partition does not contain any

instance.

e) Structure of leaves
Leaves of our induced Aff-PDT trees will be labeled by
possibility distributions on the different classes rather than
crisp classes.

In fact, when the above stopping criterion 1 or 2 is satisfied
for a training partition Tp containing n possibility distribu-
tions, we will declare a leaf labeled by the representative
possibility distribution of that set (πRep), that is, the possibility
distribution which corresponds to the closest distribution to all
the remaining distributions in the set Tp:

πRep(Tp) = arg maxn
i=1{

∑
j �=i

InfoAff(πi,πj)

(n−1) }
Hence, when considering the special case of a leaf with

only certain possibility distributions, if we take the fully
possible class of (πRep(Tp)) as a final decision, we join the
solution of majority class adopted by standard decision trees.

Finally, when stopping criterion 3 is satisfied, we declare an
empty leaf labeled by a randomly chosen wrapper possibility
distribution from WD.

It is clear that fusion cannot be applied to combine the
possibility distributions belonging to a given leaf. In fact, in
the decision tree context, in each leaf, we have possibility
distributions of distinct training instances reaching that leaf.
These instances have some common attribute values (those
values labeling edges of the path leading to that leaf) and
the remaining attributes may have different values. So, it is
clear that we cannot merge possibility distributions which are
not dealing with the same "object": a necessary condition for
information fusion problems.

Example 1: Let us use a modified version of the golf data
set [14] to illustrate the notion of wrapper distributions and
show the computation of the affinity-gain ratio of a given
attribute. Let T be the training set composed of fourteen
instances i=1..14. A possibility distribution was given for each
possible class of each instance of T.

The set of wrapper distributions relative to
this example is WD = {[1, 0], [0, 1], [1, 1]}.
Consequently, MC = {MC1,MC2,MC3} such that
MC1 = {i4, i9, i10, i11, i12, i13}, MC2 = {i1, i2, i6, i8, i14}
and MC3 = {i3, i5, i7, }.

The Affinity-Entropy of the set T is computed (using
Equation (9)) as follows : AE(T ) = −0.956∗ ( 6

14 ∗ log2 6
14 )−

0.95 ∗ ( 5
14 ∗ log2 5

14 )− 0.966 ∗ ( 3
14 ∗ log2 3

14 ) = 1.464.
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TABLE I
IMPRECISELY LABELED TRAINING SET

Outlook Temp Humidity Wind C1 C2

i1 sunny hot high weak 0.2 1
i2 sunny hot high strong 0.4 1
i3 overcast hot high weak 1 0.7
i4 rainy mild high weak 1 0
i5 rainy cool normal weak 1 0.8
i6 rainy cool normal strong 0.4 1
i7 overcast cool normal strong 1 0.9
i8 sunny mild high weak 0.3 1
i9 sunny cool normal weak 1 0.3
i10 rainy mild normal weak 1 0
i11 sunny mild normal strong 1 0.2
i12 overcast mild high strong 1 0
i13 overcast hot normal weak 1 0.3
i14 rainy mild high strong 0 1

Let us show a detailed computation of the affinity-gain
ratio of the "Wind" attribute. Let us compute AE(TWind

strong)
and AE(TWind

weak ) using Equation (9):

AE(TWind
strong) = −(0.95) ∗ (2

6 ∗ log2 2
6 ) − (0.93) ∗ ( 3

6 ∗
log2

3
6 )− (1) ∗ ( 1

6 ∗ log2 1
6 ) = 1.397.

AE(TWind
weak ) = −(0.95) ∗ ( 4

8 ∗ log2 4
8 ) − (0.97) ∗ ( 2

8 ∗
log2

2
8 )− (0.97) ∗ ( 2

8 ∗ log2 2
8 ) = 1.445.

⇒ Using Equation (10), we obtain:
AEWind(T ) = 6

14 ∗ 1.397 + 8
14 ∗ 1.445 = 1.424.

⇒ Using Equation (8): AGain(T,Wind) = 1.464− 1.424 =
0.04.

⇒ Using Equation (7): SplitInfo(T,Wind) =
− 6

14 ∗ log2 6
14 − 8

14 ∗ log2 8
14 = 0.985.

⇒ Finally, using Equation (12): AGr(T,Wind) = 0.04
0.985 =

0.0406.

Similarly, we should compute AGr(T,Outlook),
AGr(T, Temp) and AGr(T,Humidity), then choose
the attribute that maximizes AGr which will be assigned to
the decision node at hand.

C. Classification procedure

Once the Aff-PDT is constructed, we can classify any new
object given values of its attributes. We start with the root
of the constructed tree and follow the path corresponding to
the observed value of the attribute in the interior node of the
tree. This process is continued until a leaf is encountered.
As mentioned above, each leaf of our decision tree will be
labeled by a possibility distribution over the different class
values. Hence, to make a decision about the class of a given
object, the decision maker can take the fully possible class
label (i.e. the class having a possibility degree equal to 1).

V. EXPERIMENTAL RESULTS

Our experimental studies are divided in two parts. First,
we evaluate our Aff-PDT approach. Second, we compare

our results with those of the C4.5 algorithm if we ignored
uncertainty. Note that we do not intend to compare Aff-PDT
with C4.5 since this latter do not deal with uncertainty:
the aim of the comparison is to show whether ignoring
uncertainty in training data is a good practice or not.

The experimental study is based on several data sets selected
from the U.C.I repository of machine learning databases [14].
A brief description of these data sets is given in Table 2.
#Data, #attributes, #classes denote respectively the total
number of instances, the number of attributes and the number
of classes.

TABLE II
DESCRIPTION OF DATABASES

Database #Data #attributes #classes
Wisconsin Breast Cancer 699 8 2
Voting 497 16 2
Solar Flare 1389 10 3
Balance scale 625 4 3
Nursery 12960 8 5

We have modified these data sets by transforming the
original crisp classes by possibility distributions over the
different classes. We have used levels of uncertainty (L%)
when generating these possibilistic training sets: for each
training instance from the L% randomly chosen instances, we
have assigned a possibility degree equal to 1 to the original
class and a random possibility degree to the remainders in
an uniform way. To each one of the remaining (100 − L)%
instances, we have assigned a completely sure possibility
distribution corresponding to the original crisp instance’s class.

In order to determine the accuracy of the induced
trees, we have used two criteria, the first is relative
to the percentage of correct classification (PCC =
number of well classified instances
total number of classified instances ×100) and the second cor-
responds to a similarity based criterion (PCC_Aff ) which we
have proposed in [9] as a new criterion that is more appropriate
to the possibilistic context:

PCC_Aff =

∑n
j=1 InfoAff(πres, πj)

total_nbr_classified_inst
× 100 (13)

Let us recall that the output of a possibilistic decision tree
is given in the form of a possibility distribution (πres). Thus,
the standard PCC is computed by choosing for each instance
to classify the class having the highest possibility degree
(equal to 1). If more than one class is obtained, then one of
them is chosen randomly. Finally, this class label is compared
with the true class label. This is not a good practice. In fact,
ignoring the rest of the degrees implies ignoring a part of
the information given by the resulting possibility distribution
(πres).

Hence, we were inspired by the work in [2] to define the
PCC_Aff criterion which takes into account the mean simi-
larity relative to all the classified testing instances: the average
of the similarities between the resulting possibility distribution
(πres

j ) and the real (completely sure) possibility distribution
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(πj) of each classified instance j. When PCC_Aff is close
to 100%, the classifier is good whereas when it falls to 0%,
it is considered as a bad classifier.

TABLE III
AFF-PDT (PCC_Aff AND STANDARD DEVIATION)

L% 0% 30% 50%
W.B.cancer 93.37(1.3) 91.2(1.7) 88.71(2.1)
Voting 96.76 (1.7) 95.35(1.9) 94.11(1.9)
Solar Flare 87.26(2.2) 84.90(1.8) 83.77(1.6)
Balance 83.54 (1.5) 73.83 (1.2) 72.88(1.2)
Nursery 98.74 (0.8) 96.96(1.1) 95.95(1.4)

Table 3 reports the different obtained results after varying
the training sets’ level of uncertainty L% for each database.
PCC_Aff values of the induced Aff-PDT trees are
complemented by standard deviations after the use of a
10-fold cross validation testing process.

Note that high values of the PCC_Aff criterion do
not only imply that the induced trees are accurate but also
imply that the possibility distributions provided by the
induced Aff-PDT trees are of high quality and faithful to
the original possibility distributions. From Table 3, we can
see that PCC_Aff values decrease when L% increases.
This can be explained by the fact that the higher the level
of uncertainty (L%), the less informative the training set
becomes (consequently, the harder the learning becomes),
and therefore the less accurate the predictions are.

Now, let us see what happens when ignoring imprecisely
labeled training instances when building decision trees.
To respond to this question, we have conducted our
experimentations as follows: for each training set and for
each uncertainty level L%, we have induced an Aff-PDT
tree. On the other hand, a C4.5 tree was induced from the
corresponding training set, i.e., the standard training set from
which we have discarded the L% instances to which we
have assigned imprecise class labels since the C4.5 algorithm
cannot deal with such instances. Then, both approaches are
evaluated on the same testing sets: standard testing sets for
C4.5 trees have been used and their corresponding testing
sets (with completely sure possibility distributions on the
original class labels) for Aff-PDT trees: this corresponds to
one iteration of the 10-fold cross validation process used for
the evaluation of the approach.

Table 4 reports the different obtained results after varying
the training sets’ level of uncertainty L% for each database.
MPCC denotes the mean PCC (complemented by standard
deviation) of the induced decision trees for the 10-fold cross
validation process.

Table 4 shows that the Aff-PDT approach gives interesting
results when compared with the C4.5 algorithm. Again, we
can see that classification accuracies of both approaches
decrease when the level of uncertainty increases (for the same
explanation provided above for Table 3).

In spite of this decrease in accuracy, we can see that the

TABLE IV
C4.5 AND AFF-PDT (MPCC AND STANDARD DEVIATION)

Database Method L = 0% L = 30% L = 50%
W.B.cancer C4.5 94.54(1.1) 91.05(2.5) 90.11(3.2)

Aff-PDT 94.54(1.1) 91.63(2.3) 90.73(2.6)
Voting C4.5 94.56(3.2) 90.15(3.8) 87.27(4.6)

Aff-PDT 94.56(3.2) 91.62(3.5) 88.52(4.0)
Solar flare C4.5 81.96(3.3) 77.03(3.7) 74.37(3.9)

Aff-PDT 81.96(3.3) 80.57(3.7) 78.48(3.9)
Balance C4.5 78.48(4.2) 74.78(5.3) 70.38(5.7)

Aff-PDT 78.48(4.2) 77.06(4.9) 74.82(5.4)
Nursery C4.5 98.78(0.8) 94.45(1.6) 92.81(2.6)

Aff-PDT 98.78(0.8) 97.11(1.2) 94.37(2.2)

classification rate of Aff-PDT is always (even slightly) greater
than the one of C4.5. Note that the aim of this comparison
is not to directly compare the two approaches. In fact, the
C4.5 is used only in certain environments: it is trained
from reduced training sets (imprecisely labeled instances are
omitted) while the Aff-PDT approach deals with both certain
and uncertain environments: it is trained from complete
training sets (including both precisely and imprecisely labeled
instances). Besides, Table 4 confirms Proposition 1. In fact,
our approach recovers the C4.5 one when dealing with crisp
instances (with precise labels, i.e., L%=0).

From the results given in this table, we can conclude that,
generally, rejecting training instances, classes of which are
imprecisely defined, is not a good practice and reduces the
accuracy of the induced classifier. This issue can be avoided
and well handled by the use of the proposed Aff-PDT approach
which can exploit the information contained in imprecise
labels.

VI. CONCLUSION

This paper proposes a generalization of the C4.5 approach
to the imprecise setting. The new approach has the advantage
of allowing the induction of decision trees from training
instances having possibilistic class labels. The proposed Aff-
PDT approach blends information affinity with entropy in
order to asses the homogeneity of a given training partition.
Experiments have shown that rejecting training instances,
classes of which are imprecisely defined, is not a good practice
and reduces the accuracy of the induced classifier. We plan to
add an automatic clustering phase for the specification of the
wrapper distributions which could enhance the performance of
the approach.
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