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Abstract—This study presents the Multi-Layer Inverse Distance
Weighting Model (ML-IDW), inspired by the mathematical
formulation of both multi-layer neural networks (ML-NNs) and
Inverse Distance Weighting model (IDW). ML-IDW leverages
ML-NNs’ processing capabilities, characterized by compositions
of learnable non-linear functions applied to input features, and
incorporates IDW’s ability to learn anisotropic spatial dependencies,
presenting a promising solution for nonlinear spatial interpolation and
learning from complex spatial data. We employ gradient descent and
backpropagation to train ML-IDW. The performance of the proposed
model is compared against conventional spatial interpolation models
such as Kriging and standard IDW on regression and classification
tasks using simulated spatial datasets of varying complexity. Our
results highlight the efficacy of ML-IDW, particularly in handling
complex spatial dataset, exhibiting lower mean square error in
regression and higher F1 score in classification.
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I. INTRODUCTION

DEEP learning has emerged as a transformative tool for

discerning intricate structures within complex datasets,

proving its efficacy across a spectrum of tasks from regression

to classification in diverse domains such as natural language

processing and computer vision [1]. By leveraging the

inherent compositional properties of learnable non-linear

functions applied to inputs, multi-layer neural networks

(ML-NNs) have demonstrated remarkable prowess in pattern

recognition [2]. This capability is underpinned by parameter

optimization through gradient descent, facilitated by the

efficient computation of gradients using the back-propagation

algorithm [3].

Nevertheless, feedforward ML-NNs, like many machine

learning models, often assume that data observations are

independently sampled from a given distribution, thereby

overlooking the spatial dependency structures inherent in

the data. Conversely, spatial interpolation models like

Inverse Distance Weighting (IDW) excel at capturing such

dependencies, but they frequently lack the flexibility and the

learning capacity of ML-NNs.
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Montréal, H3T 1J4, Quebec, Canada (e-mail: yakin-2.hajlaoui@polymtl.ca,
richard.labib@polymtl.ca, michel.gamache@polymtl.ca).

Jean-François Plante is with Department of Decision Sciences, HEC
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Numerous studies have compared machine learning against

spatial interpolation (SI) models [3]–[6], showcasing the

advantages of ML models in accurately depicting nonlinear

relationships [4]. However, discussions on the limitations of

ML models in modeling spatial relationships have led to

a preference for spatial interpolations in scenarios where

data exhibit significant spatial correlations [7]. Additionally,

by employing linear interpolation, SI models furnish

smooth predictions that risk overlooking abrupt changes and

non-linearities in the data [8]. In response to these constraints,

many researchers have proposed the fusion of both approaches

[9]–[14].

For instance, some studies have combined SI with artificial

neural networks (ANNs), utilizing SI to augment data

by interpolating in locations lacking observational features,

subsequently leveraging ANN that uses the provided feature

maps as dependent variables for prediction [12]. Other studies

combined Regression Kriging with machine learning models

like Support Vector Machine (SVM) where the ML model

predicts the drift, while Kriging performs spatial interpolation

on the residuals, treating them as corrections to the predicted

values [9], [15]. This approach has also been extended to

classification tasks, where Simplical Indicator Kriging is

combined with SVM for classification purposes [15], [16].

Despite the effectiveness of many ML models, they still

lack the representational capacity, computational efficiency,

and flexibility of deep neural networks, in which model

complexity is customizable relative to the datasets. Proposed

architectures such as Residual Neural Networks have been

introduced to safely use deeper models without risking the

vanishing gradient problem [17]. To our knowledge, few

studies are conducted to present a spatial interpolation model

that has similar benefits. We aim to address this gap through

our study by presenting such a model: the ML-IDW model.

This model applies compositions of learnable non-linear

functions to input data and uses IDW interpolation with

learnable parameters. Trained using gradient descent and

back-propagation, it is compatible to be stacked with other

ANNs models or architectures. This would allow us to leverage

the power of deep learning while simultaneously accounting

for spatial dependency structures.
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II. THEORY AND METHODOLOGY

A. Conventional IDW: A Brief Background

Let the data consist of targets ti, i = 1, ...., N , which are

spatially correlated and located in 2D spatial coordinates si =
[xi, yi]

T . We denote by T the set of indices in the test data

and by T the set of indices in the training data. Conventional

Inverse Distance Weighting (IDW) performs a prediction at

an unsampled location sj , j ∈ T , by computing an average

weighted sum of targets ti, i ∈ T :

t̂j =
∑
i∈T

wjiti, (1)

where wji = da(si, sj)
−p/

∑
k

da(sk, sj)
−p are the IDW

weights that depend on the power parameter p. The term

da(si, sj) =
√
(xi − xj)2/�2x + (yi − yj)2/�2y represents the

Euclidean distance accounting for anisotropy in the spatial

correlation, where �x is called the range, or length-scale, of

the x principal direction, and similarly for �y the principal

direction of y [18], [19]. In the conventional approach, the

set of parameters to be learned, denoted θ = {p, �x, �y}, are

derived using the Leave One Out Cross Validation (LOOCV)

algorithm [20], [21]. This algorithm involves conducting a

grid search G of possible parameter candidates in order to

choose the set of parameters that minimizes the LOOCV error:

ELOOCV = (1/|T |)∑i∈T (t̂i−ti)
2. This error consists of the

average of the squared errors between every target ti in the

training data and its IDW estimate t̂i, computed using IDW

performed on all the training data, leaving the ith observation

out.

This training approach has a time complexity scaling as

O(|T |2 ∗ |G|) and a space complexity of O(|T |+ |G|), where

|T | represents the size of the training dataset without the

omitted observation, and |G| = m3 denotes the size of the

grid, with m being the number of parameter possibilities. This

method faces challenges in scalability due to the potentially

large size of the grid |G|. As m increases to explore more

parameter possibilities, both time and space complexity grow

significantly. While a higher m might lead to improved

accuracy by considering a finer-grained search over parameter

space, it also compromises scalability.

B. Gradient Based IDW

To address the challenges posed by conventional Inverse

Distance Weighting (IDW) interpolation, we presented a

Gradient-Based IDW (GB-IDW) approach in a previous study.

In GB-IDW, we leveraged the matrix formulation of an

IDW model to compute the leave-one-out cross-validation

(LOOCV) error in a single forward pass: ELOOCV (θ) =

1/|T |
∥∥t̂− t

∥∥2 = 1/|T |
∥∥W(θ)t− t

∥∥2.

Here, t and t̂ are vectors containing the true values and

the IDW predicted values, respectively, for i ∈ T . W is a

matrix with zeros on the diagonal and GB-IDW weights wji

elsewhere. ‖.‖ denotes the Euclidean norm.

We exploited the differentiability of this error with

respect to the parameter set θ to apply gradient descent

and backpropagation for minimizing ELOOCV (θ). The time

complexity of this training approach scales as O(|T |2 × |I|),
where |I| denotes the number of training iterations. This is

because the backpropagation algorithm scales linearly with

the number of parameters (O(3 × |I|)) [22], making the

time complexity dominated by O(|T |2 × |I|). This represents

a significant reduction in time complexity compared to

conventional methods, especially when |I| � |G|.
Additionally, the space complexity is dominated by

O(|T |2). While time and space complexity could be a

drawback for large data sizes, leveraging the power of

Graphics Processing Units (GPUs) in parallelism and memory

efficiency can mitigate this challenge significantly.

By exploiting the optimized matrix operations inherent

in GPUs, we can achieve substantial improvements in

computational efficiency [23]–[25]. GPUs are designed to

handle parallel operations efficiently, particularly in deep

learning tasks, making them well-suited for accelerating the

training process of GB-IDW. This can effectively address the

scalability challenges encountered in large-scale interpolation

tasks.

C. Single Layer IDW

GB-IDW, trained with gradient descent and

backpropagation, is compatible with neural networks

and can be stacked with an Artificial Neural Network (ANN)

for further processing of the targets t. We introduce a Single

Layer IDW (SL-IDW) by adding a single processing layer to

the vector t before using GB-IDW for interpolation.

Let X denote dependent covariates that may contains other

dependent features along with the spatial locations S = [si].
We employ a simple feedforward Neural Network, denoted

as NN , which takes X as input and produces two vectors

c = [ci] and b = [bi] representing the slope and intercept

for t, respectively. A simple linear regression is performed on

t to compute the hidden vector h = c � t + b using these

two parameters, where � denotes elementwise product and +
denotes elementwise sum (c � t + b = [citi + bi]). We then

apply an activation function g(1) to introduce nonlinearity and

compute the hidden layer a(1) = g(1)(h).

Spatial interpolation is then applied to a(1) by computing

t̂ = W(θ)a(1). The LOOCV error ELOOCV (θ, ϕ) =

1/|T |
∥∥W(θ)a(1) − t

∥∥2 remains differentiable with respect

to all parameters of the model, comprising θ = {p, �x, �y}
as GB-IDW parameters, and ϕ, as the parameters of the

feedforward neural network NN.

In summary, the interpolation equation of the Single Layer

IDW is:

t̂ = W(θ)a(1),

a(1) = g(1)(h),

h = c� t+ b, c,b = NN(X).
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D. Mutli-Layer IDW for Regression

Multi-Layer IDW (ML-IDW) for regression extends Single

Layer IDW (SL-IDW) by incorporating multiple processing

layers for t. Each layer k takes a(k−1) from the previous layer

as input and computes the hidden vector h(k) = c(k)�a(k−1)+
b(k), where c(k),b(k) = NN (k)(X) represent the intercept

and slope provided by the feedforward neural network for

layer k, NN (k). An activation function g(k) is then applied to

compute a(k) = g(k)(h(k)).
Inspired by Residual Neural Networks (ResNet), which

learn a nonlinear residual to facilitate identity map learning

and address vanishing gradients [17], we present a skipping

connection layer such that a(k) = g(k)(h(k))+h(k−2). Spatial

interpolation is performed on the output of the last layer L:

t̂ = W(θ)a(L).

In summary, the interpolation equation of ML-IDW is:

t̂ = W(θ)a(L),

a(k) = g(k)(h(k)) + h(k−2), k = 2, ..., L,

a(1) = g(1)(h(1)),

a(0) = t,

h(k) = c(k) � a(k−1) + b(k),

c(k),b(k) = NN (k)(X), k = 1, ..., L.

It is worth noting that with this setup, the model will also

be able to learn through spatial interpolation on the values

t, any unknown mapping u of t: u = f(t). A special case

could be explored for classification in which we transform t
into categorical variables u using the function ui = f(ti) = 1
if ti ≥ α, ui = f(ti) = 0 otherwise, where α is a threshold.

Such a setup will make our model competitive with nonlinear

spatial interpolation methods such as Simplicial Indicator

Kriging.

E. Mutli-Layer IDW for Classification

In ML-IDW for classification, we aim to predict categorical

spatial targets ui ∈ {1, ....., C}, where C is the number of

possible categories obtained through categorizing the targets

ti. We extend ML-IDW for regression to perform classification

tasks by introducing a feedforward neural network FN and

applying a softmax function to each value t̂i to obtain

the vector of probabilities pi = [p
(1)
i , ..., p

(C)
i ] containing

the probability of each category. The classification rule

in this case is assigning the class characterized by the

highest probability: ûi = argmax(pi). The cross-entropy loss

function is utilized as the minimization criterion: L(U,P) =

1/|T |∑|T |
i=1

∑C
l=1 u

(l)
i ln(p

(l)
i ). Here, U = [u

(l)
i ] contains the

ground truth labels (1 if sample i belongs to class l, 0

otherwise), and P = [p
(l)
i ] contains the predicted probabilities

that sample i belongs to class l. In summary the interpolation

equation of ML-IDW in case of classification is:

P = softmax(FN(W(θ)a(L))),

a(k) = g(k)(h(k)) + h(k−2), k = 2, ..., L,

a(1) = g(1)(h(1)),

a(0) = t,

h(k) = c(k) � a(k−1) + b(k), c(k),

b(k) = NN (k)(X), k = 1, ..., L.

III. EXPERIMENTS AND RESULTS

A. Data Description

To assess our models, we employed the Turning Band

method [26] for geostatistical simulation to generate 2D

spatial data across varying sizes, ranging from 100 to 10,000

data points. We utilized two types of variogram models for

simulation to provide spatially correlated datapoints: a simple

model composed of a Gaussian variogram and a nested model

combining Gaussian and exponential variograms. Across all

datasets, the partial sill was set at 20 with a nugget of 4.

Anisotropy was introduced by establishing the range along the

y-axis as one third of the range along the x-axis (�y = �x/3).
We introduced complexity variations by considering different

range values �x: 20, 50, and 80. A smaller range implies a

more localized correlation, introducing local abrupt changes,

thus increasing the complexity of the data. Table I summarizes

the simulated datasets.

These datasets serve both regression and classification

purposes. For classification tasks, categorical targets (u) were

derived from continuous targets (t) by setting ui = 1 if ti ≥ α,

ui = 0 otherwise. Here, the threshold α is set as the median

of the observations t to ensure data balance.

B. Training Efficiency

In this section, we explore the training efficiency

of GB-IDW and ML-IDW using gradient descent and

backpropagation, comparing them to the conventional

approach of training an IDW model via a search in a

discretized grid. As previously noted, time complexity can

be a significant challenge for conventional IDW, it varies

polynomially with the number of possibilities per parameter

m, and exponentially with the number of parameters. Fig. 1

illustrates different values of m versus the training time and

the training error ELOOCV , utilizing dataset 6 comprising

1000 data points. As anticipated, employing a finer grid leads

to lower training error; however, the training time increases

significantly.

Table II presents the ELOOCV values for IDW, GB-IDW,

and ML-IDW, along with the number of gradient descent

iterations, the grid size for conventional IDW, and the total

training time. GB-IDW achieves a comparable training error

in a shorter duration, while ML-IDW with 5 layers achieves a

lower training error in a very short time. For larger datasets,

such as those with 10,000 data points, the time complexity

will significantly increase, making it exceedingly challenging

to train conventional IDW within a reasonable timeframe while

considering all three parameters {p, �x, �y}.

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:18, No:10, 2024 

123International Scholarly and Scientific Research & Innovation 18(10) 2024 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s 

V
ol

:1
8,

 N
o:

10
, 2

02
4 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

86
1.

pd
f



TABLE I
GEOSTATISTICAL CHARACTERISTICS OF THE SIMULATED DATASETS

Datasets Variogram model Size Nugget Partial Sill Range Anisotropy
dataset 1 Gaussian 100 4 20 20 �y = �x/3
dataset 2 Gaussian 100 4 20 50 �y = �x/3
dataset 3 Gaussian 100 4 20 80 �y = �x/3
dataset 4 Gaussian 1000 4 20 20 �y = �x/3
dataset 5 Gaussian 1000 4 20 50 �y = �x/3
dataset 6 Gaussian 1000 4 20 80 �y = �x/3
dataset 7 Gaussian 10000 4 20 20 �y = �x/3
dataset 8 Gaussian 10000 4 20 50 �y = �x/3
dataset 9 Gaussian 10000 4 20 80 �y = �x/3
dataset 10 Gaussian + Exponential 100 4 20 20 �y = �x/3
dataset 11 Gaussian + Exponential 100 4 20 50 �y = �x/3
dataset 12 Gaussian + Exponential 100 4 20 80 �y = �x/3
dataset 13 Gaussian + Exponential 1000 4 20 20 �y = �x/3
dataset 14 Gaussian + Exponential 1000 4 20 50 �y = �x/3
dataset 15 Gaussian + Exponential 1000 4 20 80 �y = �x/3
dataset 16 Gaussian + Exponential 10000 4 20 20 �y = �x/3
dataset 17 Gaussian + Exponential 10000 4 20 50 �y = �x/3
dataset 18 Gaussian + Exponential 10000 4 20 80 �y = �x/3

(a) (b)

Fig. 1 (a) Training time of conventional IDW vs. number of possibilities per parameter; (b) ELOOCV error vs. number of possibilities per parameter for
conventional IDW

TABLE II
MODELS’ EFFICIENCY

Model Number of iterations |I| or grid size |G| ELOOCV Training time (seconds)

Conventional IDW |G| = 203 = 8000 7.804 1594.709
GB-IDW |I| =1000 7.804 12.49

ML-IDW (5 layers) |I| =1000 6.680 136.234

C. Results on Regression Tasks

To investigate model performance on regression tasks, we

partitioned each dataset so that seventy percent of the data

served as training data, while the remaining thirty percent

served as test data. We began with datasets containing 10,000

data points and monitored the prediction performance of

Ordinary Kriging, Grad-IDW, and ML-IDW with 5 layers

with Relu activation function (referred to as Deep-IDW) while

varying complexity (specifically, varying the range).

Fig. 2 depicts, from the upper left figure to bottom right

figure, the simulated data (dataset 7 characterized by high

complexity with a range of 20), the training data, the test

data, predictions from Ordinary Kriging, predictions from

Grad-IDW, and predictions from Deep-IDW.

On datasets characterized by high complexity, Deep-IDW

exhibits higher resolution, with predicted values closer to the

ground truth values of the test data. Grad-IDW demonstrates

lesser resolution. However, Ordinary Kriging appears very

smooth and is unable to capture abrupt changes in the data.

Figs. 3a and 3b illustrate the Mean Square Error (MSE)

for the three models concerning complexity respectively for

datasets with simple and nested variogram models. It is

evident that Deep-IDW excels in higher complexity scenarios

(range=20), exhibiting lower MSEtest. However, the results

are remarkably comparable in medium complexity situations

(range=50), with Grad-IDW demonstrating the lowest test

error in Fig 3 (a). On low complexity datasets (range = 80),

Ordinary Kriging performs slightly better.

The advantage of ML-IDW in this context lies in its

customised nature: we can adjust the model complexity by

adding or removing layers according to data complexity. It is
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Fig. 2 Sets and predictions

worth noting that Grad-IDW is a variant of ML-IDW with no

layers, making it a simpler alternative in certain scenarios.

(a)

(b)

Fig. 3 Mean Square Error for OK, Grad-IDW, and DeepIDW on
10,000-point dataset: (a) Simple variogram; (b) Nested variogram

Figs. 4a and 4b display the Mean Square Error (MSE)

test results for the three models across different data sizes,

specifically focusing on high complexity (range=20) and low

complexity (range=80) scenarios, respectively.

Table III shows the MSE for all dataset. Observing the

results while fixing complexity and varying data size, it

is evident that the performance of all models declines as

the data size decreases. Notably, Deep-IDW exhibits better

performance than OK, and comaparable performance with

Grad-IDW in high complexity scenarios, while Ordinary

Kriging exhibits slightly superior performance in low

complexity situations.

TABLE III
THE MEAN SQUARE ERROR TEST (MSE) FOR EACH MODEL AND EACH

DATASET

Datasets OK Grad-IDW Deep-IDW (5 layers ML-IDW)
dataset 1 29.218 24.6919 24.455
dataset 2 23.64497 26.115776 26.46
dataset 3 16.72 18.425 18.41
dataset 4 20.748 16.26 16.5218
dataset 5 10.339 12.695 12.443
dataset 6 8.6799 9.9069 9.991
dataset 7 15.905 11.53 10.78
dataset 8 8.347 7.6757 8.2087
dataset 9 6.5 6.643 6.88957
dataset 10 39.19 36.139 36.54
dataset 11 22.829 25.23613 25.397
dataset 12 15.705 16.7 16.63
dataset 13 23.047 17.45 18.89
dataset 14 9.6436 13.549 14.19
dataset 15 8.133 12.393 12.7872
dataset 16 16.919 11.891 10.98
dataset 17 6.589 7.33 8.5141
dataset 18 6.507 6.592 7.0053

Note: Lower MSE indicates closer predictions to the ground truth.
The bold values are the lowest for each dataset.
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(a)

(b)

Fig. 4 Mean Square Error for OK, Grad-IDW, and DeepIDW vs. data size
on a simple variogram model: (a) High complexity; (b) Low complexity

Fig. 5 F1 score for IK, Simplical IK with SVC, and DeepIDW vs. data
complexity on a 10,000-point simple variogram dataset

D. Results on Classification

In the classification task, we compare a ML-IDW classifier

with 5 layers, referred to as Deep-IDW-Classifier, against

Indicator Kriging (IK) and Simplical Indicator Kriging (SIK)

combined with Support Vector Machine for Classification

(SVC). We employ the F1 score as the performance criterion

(higher values indicating better performance) to evaluate

the prediction capabilities on the test data. Similar to the

regression task, we divide the data into training and test sets.

Fig. 6 illustrates the training and test data, along with the

predictions of the three models for dataset 7. It is evident

that Deep-IDW can capture nonlinearities and abrupt changes

in the data. Simplical Indicator Kriging combined with SVC

also performs well, while Indicator Kriging struggles to mimic

the behavior of the test set.

Table IV summarizes the results for all datasets. We observe

that Deep-IDW-Classifier excels in most cases and its results

where at least comparable with the best classifier.

Fig. 5 presents the F1 score for each model with respect

to complexity. In this case, Deep-IDW-Classifier outperforms

Simplical Indicator Kriging with SVC and Indicator Kriging

in high and medium complexity scenarios, whereas Indicator

Kriging performs better in low complexity scenarios.

TABLE IV
THE F1 SCORE IN PERCENTAGE FOR EACH MODEL AND EACH

DATASET

Datasets IK SIK with SVC Deep-IDW-Classifier
dataset 1 50 56.66 60
dataset 2 76.66 53.33 76.66
dataset 3 63.33 50 63.33
dataset 4 69.66 67 70.33
dataset 5 78.66 73.66 75.33
dataset 6 81 78.33 79
dataset 7 70.63 77.4 79.2
dataset 8 80.93 81.16 82.26
dataset 9 87.266 86.26 86.366
dataset 10 80 56.66 70
dataset 11 66.66 53.33 43.33
dataset 12 70 60 40
dataset 13 50.33 66 69.66
dataset 14 76.66 76 76.33
dataset 15 83 81.66 82.33
dataset 16 74.5 79.6 80.2
dataset 17 85.56 85.2 85.66
dataset 18 87.766 89.23 89.9

Note: Higher F1 score indicates better classification. The
bold values are the highest for each dataset.

IV. CONCLUSION

In this study, we proposed the Multi-Layer Inverse Distance

Weighting Model (ML-IDW), a spatial interpolation model

inspired by both the formulation of multi-layer neural

networks—as compositions of learnable functions—and the

inverse distance weighting (IDW) approach, which utilizes an

average weighted sum of inverse distance functions. The goal

was to enhance spatial interpolation capabilities, enabling the

model to learn from complex data without compromising the

inherent spatial dependency structure.

Our results demonstrated that ML-IDW outperforms

conventional geostatistical approaches, such as Ordinary

Kriging, Indicator Kriging, and Simplical Indicator Kriging, in

both regression and classification tasks when data complexity

is high. In scenarios with lower complexity, the results were

comparable. Notably, ML-IDW is a customizable model,

allowing for the addition or removal of layers according to

the data’s complexity.

Furthermore, ML-IDW exhibited higher training efficiency

compared to traditional IDW training methods. By utilizing

gradient descent and backpropagation for training, the model

is compatible with other neural network architectures.

For future work, we plan to stack ML-IDW neural network

projection models to learn spatial dependencies on latent

representations.
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Fig. 6 Sets for classification and predictions
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