Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7

Search results for: Zied Elouedi

7 Learning and Evaluating Possibilistic Decision Trees using Information Affinity

Authors: Ilyes Jenhani, Salem Benferhat, Zied Elouedi

Abstract:

This paper investigates the issue of building decision trees from data with imprecise class values where imprecision is encoded in the form of possibility distributions. The Information Affinity similarity measure is introduced into the well-known gain ratio criterion in order to assess the homogeneity of a set of possibility distributions representing instances-s classes belonging to a given training partition. For the experimental study, we proposed an information affinity based performance criterion which we have used in order to show the performance of the approach on well-known benchmarks.

Keywords: Data mining from uncertain data, Decision Trees, Possibility Theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1206
6 Selection Initial modes for Belief K-modes Method

Authors: Sarra Ben Hariz, Zied Elouedi, Khaled Mellouli

Abstract:

The belief K-modes method (BKM) approach is a new clustering technique handling uncertainty in the attribute values of objects in both the cluster construction task and the classification one. Like the standard version of this method, the BKM results depend on the chosen initial modes. So, one selection method of initial modes is developed, in this paper, aiming at improving the performances of the BKM approach. Experiments with several sets of real data show that by considered the developed selection initial modes method, the clustering algorithm produces more accurate results.

Keywords: Clustering, Uncertainty, Belief function theory, Belief K-modes Method, Initial modes selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1552
5 Pruning Method of Belief Decision Trees

Authors: Salsabil Trabelsi, Zied Elouedi, Khaled Mellouli

Abstract:

The belief decision tree (BDT) approach is a decision tree in an uncertain environment where the uncertainty is represented through the Transferable Belief Model (TBM), one interpretation of the belief function theory. The uncertainty can appear either in the actual class of training objects or attribute values of objects to classify. In this paper, we develop a post-pruning method of belief decision trees in order to reduce size and improve classification accuracy on unseen cases. The pruning of decision tree has a considerable intention in the areas of machine learning.

Keywords: machine learning, uncertainty, belief function theory, belief decision tree, pruning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1696
4 Taxonomy of Structured P2P Overlay Networks Security Attacks

Authors: Zied Trifa, Maher Khemakhem

Abstract:

The survey and classification of the different security attacks in structured peer-to-peer (P2P) overlay networks can be useful to computer system designers, programmers, administrators, and users. In this paper, we attempt to provide a taxonomy of structured P2P overlay networks security attacks. We have specially focused on the way these attacks can arise at each level of the network. Moreover, we observed that most of the existing systems such as Content Addressable Network (CAN), Chord, Pastry, Tapestry, Kademlia, and Viceroy suffer from threats and vulnerability which lead to disrupt and corrupt their functioning. We hope that our survey constitutes a good help for who-s working on this area of research.

Keywords: P2P, Structured P2P Overlay Networks, DHT, Security, classification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1489
3 A Numerical and Experimental Analysis of the Performance of a Combined Solar Unit for Air Conditioning and Water Desalination

Authors: Zied Guidara, Alexander Morgenstern, Aref Younes Maalej

Abstract:

In this paper, a desiccant solar unit for air conditioning and desalination is presented first. Secondly, a dynamic modelling study of the desiccant wheel is developed. After that, a simulation study and an experimental investigation of the behaviour of desiccant wheel are developed. The experimental investigation is done in the chamber of commerce in Freiburg-Germany. Indeed, the variations of calculated and measured temperatures and specific humidity of dehumidified and rejected air are presented where a good agreement is found when comparing the model predictions with experimental data under the considered range of operating conditions. Finally, the study of the compartments of desalination and water condensation shows that the unit can produce an acceptable quantity of water at the same time of the air conditioning operation.

Keywords: Air conditioning, desalination, condensation, design, desiccant wheel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1415
2 Robust Features for Impulsive Noisy Speech Recognition Using Relative Spectral Analysis

Authors: Hajer Rahali, Zied Hajaiej, Noureddine Ellouze

Abstract:

The goal of speech parameterization is to extract the relevant information about what is being spoken from the audio signal. In speech recognition systems Mel-Frequency Cepstral Coefficients (MFCC) and Relative Spectral Mel-Frequency Cepstral Coefficients (RASTA-MFCC) are the two main techniques used. It will be shown in this paper that it presents some modifications to the original MFCC method. In our work the effectiveness of proposed changes to MFCC called Modified Function Cepstral Coefficients (MODFCC) were tested and compared against the original MFCC and RASTA-MFCC features. The prosodic features such as jitter and shimmer are added to baseline spectral features. The above-mentioned techniques were tested with impulsive signals under various noisy conditions within AURORA databases.

Keywords: Auditory filter, impulsive noise, MFCC, prosodic features, RASTA filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2121
1 Using HMM-based Classifier Adapted to Background Noises with Improved Sounds Features for Audio Surveillance Application

Authors: Asma Rabaoui, Zied Lachiri, Noureddine Ellouze

Abstract:

Discrimination between different classes of environmental sounds is the goal of our work. The use of a sound recognition system can offer concrete potentialities for surveillance and security applications. The first paper contribution to this research field is represented by a thorough investigation of the applicability of state-of-the-art audio features in the domain of environmental sound recognition. Additionally, a set of novel features obtained by combining the basic parameters is introduced. The quality of the features investigated is evaluated by a HMM-based classifier to which a great interest was done. In fact, we propose to use a Multi-Style training system based on HMMs: one recognizer is trained on a database including different levels of background noises and is used as a universal recognizer for every environment. In order to enhance the system robustness by reducing the environmental variability, we explore different adaptation algorithms including Maximum Likelihood Linear Regression (MLLR), Maximum A Posteriori (MAP) and the MAP/MLLR algorithm that combines MAP and MLLR. Experimental evaluation shows that a rather good recognition rate can be reached, even under important noise degradation conditions when the system is fed by the convenient set of features.

Keywords: Sounds recognition, HMM classifier, Multi-style training, Environmental Adaptation, Feature combinations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1402