Existence of solution for singular two-piont boundary value problem of second-order differential equation

Xiguang Li

Abstract

In this paper, by constructing a special set and utilizing fixed point theory in coin, we study the existence of solution of singular two points boundary value problem for second-order differential equation, which improved and generalize the result of related paper .

Keywords-singular differential equation, boundary value problem, coin, fixed point theory .

I. Introduction

THE theory of singular differential equation is emerging as an important area of investigation since it is much richer than the corresponding theory of concerning equation without singular . Recently,some existence results concerning the general boundary value problem of singular differential equation have been obtained ([1-3]), in thesis [4].wang proved the existence of solution for the general boundary value problem for the second-order differential equation:

$$
\left\{\begin{array}{l}
x^{\prime \prime}(t)=f(t, x(t)), \\
\alpha x(0)-\beta x^{\prime}(0)=0, \\
\gamma x(1)+\delta x^{\prime}(1)=0,
\end{array}\right.
$$

however, the f is a function without the term x^{\prime}, motivated by the work of Wang, in this paper we study the following second-order differential equation

$$
\left\{\begin{array}{l}
x^{\prime \prime}(t)=f\left(t, x(t) x^{\prime}(t)\right), \tag{1}\\
\alpha x(0)-\beta x^{\prime}(0)=0, \\
\gamma x(1)+\delta x^{\prime}(1)=0,
\end{array}\right.
$$

where $f \in C\left[J \times R^{2}, R\right], J=[0,1], f(.$.$) may be singular$ at $t=0,1$, that is $\lim _{t \rightarrow 0}\|f(t .)\|=.\infty, \lim _{t \rightarrow 1}\|f(t .)\|=.\infty$, let $C[J, R]=\{x: J \xrightarrow{t \rightarrow 0} R \mid x$ is continuous in $J\}$, and $C^{1}[J, R]=\left\{x \in C[J, R] \mid x^{\prime}\right.$ is continuous in $\left.J\right\}$, It is easy to prove that $C[J, R]$ is a Banach space with norm $\|x\|=\max _{t \in J} \mid$ $x(t) \mid, C^{1}[J, R]$ is also a Banach space with norm $\|x\|_{1}=$ $\max _{t \in J}\left\{|x(t)|,\left|x^{\prime}(t)\right|\right\}$, A map $x \in C^{1}[J, R] \cap C^{2}[J, R]$ is called a solution of (1) if it satisfies all equations of (1). For convenience sake, we list the definition and preliminary lemmas .

Definition 1.1 let E be a real Banach space, if P is a convex close set and satisfied the following conditions : (1) $x \in P, \lambda \geq$

[^0]$0 \Rightarrow \lambda x \in P ;(2) x \in P,-x \in P \Rightarrow x=\theta, \theta$ is element zero of E, we call P is a coin in E.

Lemma 1.1 Assume that $\Delta=\alpha \gamma+\alpha \delta+\beta \gamma$,
$G(t, s)=\left\{\begin{array}{l}\frac{1}{\Delta}(\beta+\alpha t)(\delta+\gamma(1-s)), 0 \leq t \leq s \leq 1, \\ \frac{1}{\Delta}(\beta+\alpha s)(\delta+\gamma(1-t)), 0 \leq s \leq t \leq 1 .\end{array}\right.$
Let $y \in C[J, E]$, then

$$
\left\{\begin{array}{l}
x^{\prime \prime}(t)=y \\
\alpha x(0)-\beta x^{\prime}(0)=0 \\
\gamma x(1)+\delta x^{\prime}(1)=0
\end{array}\right.
$$

has a unique solution in $C^{2}[J, R]$ given by $x(t)=$ $\int_{0}^{1} G(t, s) y(s) d s$. We also easily obtain $G(t, s) \leq G(s, s)=$ $e(s)$ and $G(t, s) \leq G(t, t)=e(t), 0<t, s<1$.

Lemma 1.2 ([5])Let K be a coin in a Banach space, $0<r<R, B(\theta, R)=\{x \in K \mid\|x\| \leq R\}, \overline{K_{R}}=$ $\overline{B(\theta, R) \bigcap K}$. Suppose that operator $A: \overline{\overline{K_{R}}} \rightarrow K$ is a completely continuous such that following conditions are satisfied : for $x \in K,\|x\|=R,\|A(x)\| \leq\|x\|$, and for $x \in K,\|x\|=r\|A(x)\| \geq\|x\|$, then A has a fixed point in $\overline{K_{R}} \backslash K_{r}$.

II. Conclusion

Theorem2.1 Let $f:(0,1) \times R^{2} \rightarrow R$ be a continuous function, suppose that the following conditions are satisfied : $\left(H_{1}\right)$ For all $(x, y) \in R^{2}$ and $t \in(0,1), f(t, x, y)=$ $p_{1}(t) q_{1}(x)+p_{2}(t) q_{2}(y)+r(t)$, where $p_{i}, q_{i} \in C[(0,1), R]$, and $\int_{0}^{1} e(s) p_{i}(s) d s<+\infty(i=1,2), r(t) \in C[J, R]$ and $\int_{0}^{1} e(s) r(s) d s<+\infty$.
$\left(H_{2}\right)$ There exist constant $a>0$ such that

$$
\begin{aligned}
& \int_{0}^{1} e(t) p_{1}(t) \max _{x \in\left[g_{a}(t), a\right]} q_{1}(x) d t \\
& +\int_{0}^{1} e(t) p_{2}(t) \max _{y \in\left[g_{a}(t), a\right]} q_{2}(y) d t \\
& +\int_{0}^{1} e(t) r(t) d t<a
\end{aligned}
$$

where

$$
G_{a}(t)=\left\{\begin{array}{l}
a t, 0 \leq t \leq \frac{1}{2} \\
a(1-t), \frac{1}{2} \leq t \leq 1
\end{array}\right.
$$

$\left(H_{3}\right)$ There exist constant $b \in(0, a)$ such that

$$
\left\|\int_{0}^{1} M e(t) \min _{x \in\left[g_{b}(t), b\right]} f\left(t, x, x^{\prime}\right) d t\right\| \geq b
$$

where $M=\min \left\{\frac{\beta+\theta \alpha}{\beta+\alpha}, \frac{\delta+\theta \gamma}{\delta+\gamma}\right\}$, then the problem (1) has at least one solution $x \in C^{2}[0,1]$.

Proof : Operator $A: C^{1}[0,1] \rightarrow C^{1}[0,1]$ is defined as follows : $A x(t)=\int_{0}^{1} G(t, s) f\left(s, x(s), x^{\prime}(s)\right) d s$. It is easy to see $x(t)$ is a solution of (1) if and only if $x(t)$ is a fixed point of the operator $A x(t)=x(t)$. Let $E=C^{1}[0,1], K=\{x \in$ $\left.C^{1}[0,1], \min _{t \in\left(\frac{1}{4} \frac{3}{4}\right)} x(t) \geq M\|x(t)\|\right\}$, it is easy to see K is a coin in E.
First, we'll prove that operator A is a completely continuous one mapping K into K. Let D be a arbitrary bounded set of $C^{1}[0,1]$, for all $x \in D, \sup q_{i}[0,\|x\|]$ is defined as follow: $\sup q_{i}\left[0,\|x\|_{1}\right]=\sup \left\{q_{i}(y) \mid y \in\left[0,\|x\|_{1}\right]\right\}(i=1,2)$. therefore,

$$
\begin{aligned}
A x(t)= & \int_{0}^{1} G(t, s) f\left(s, x(s), x^{\prime}(s)\right) d s \\
& \leq \int_{0}^{1} e(s) p_{1}(s) q_{1}(x(s)) d s \\
& +\int_{0}^{1} e(s) p_{2}(s) q_{2}\left(x^{\prime}(s)\right) d s+\int_{0}^{1} e(s) r(s) d s
\end{aligned}
$$

hence,

$$
\begin{aligned}
\|A x\| & \leq \int_{0}^{1} e(s) f\left(s, x(s), x^{\prime}(s)\right) d s \\
& \leq \sup q_{1}\left[0,\|x\|_{1}\right] \int_{0}^{1} e(s) p_{1}(s) d s \\
& +\sup q_{2}\left[0,\|x\|_{1}\right] \int_{0}^{1} e(s) p_{2}(s) d s+\int_{0}^{1} e(s) r(s) d s .
\end{aligned}
$$

In view of $\left(H_{1}\right)$, we easily obtain that $A D$ are all uniformly bounded on J. On the other hand, according to Lebesgue control collect theory, we know that A is continuous on J. For $\frac{1}{4}<t<\frac{3}{4}$, we have

$$
\frac{G(t, s)}{G(s, s)}=\left\{\begin{array}{l}
\frac{\varphi(t)}{\varphi(s)}, s \leq t, \\
\frac{\psi(t)}{\psi(s)}, t \leq s,
\end{array} \geq\left\{\begin{array}{l}
\frac{\delta+\theta \gamma}{\delta+\gamma}, s \leq t \\
\frac{\beta+\theta \alpha}{\beta+\alpha}, t \leq s
\end{array}\right.\right.
$$

where

$$
\varphi(t)=(\gamma+\delta-\gamma t), \psi(t)=(\beta+\alpha t), 0 \leq t \leq 1,
$$

so we get $\frac{G(t, s)}{G(s, s)} \geq M$, therefore $G(t, s) \geq M e(s)$.
If $x \in K$, then

$$
\begin{align*}
\min _{\frac{1}{4}<t<\frac{3}{4}} A x(t)= & \min _{\frac{1}{4}<t<\frac{3}{4}} \int_{0}^{1} G(t, s) f\left(s, x(s), x^{\prime}(s)\right) d s \\
& \geq M \int_{0}^{1} e(s) f\left(s, x(s), x^{\prime}(s)\right) d s \\
& \geq M\|A x\|, \tag{2}
\end{align*}
$$

so $A x \in K$, which imply that $A K \subset K$. For any $x \in[0,+\infty)$, we can define $P_{i, n}(t)(i=1,2)$ as follow:
$P_{i, n}(t)=\left\{\begin{array}{lc}\min \left\{p_{i}(t), p_{i}\left(\frac{1}{n}\right)\right\}, & 0 \leq t \leq \frac{1}{n}, \\ p_{i}(t), & \frac{1}{n} \leq t \leq \frac{n-1}{n}, \\ \min \left\{p_{i}(t), p_{i}\left(\frac{n-1}{n}\right)\right\}, & \frac{n-1}{n} \leq t \leq 1 .\end{array}\right.$
Let $p_{1, n}(t) q_{1}(x)+p_{2, n}(t) q_{2}\left(x^{\prime}\right)+r(t)=f_{n}\left(t, x, x^{\prime}\right)$, it is easy to see for any $t \in[0,1]$,
$f_{n}\left(t, x, x^{\prime}\right)= \begin{cases}\min \left\{f\left(t, x, x^{\prime}\right), f\left(\frac{1}{n}, x, x^{\prime}\right)\right\}, 0 \leq t \leq \frac{1}{n}, \\ f\left(t, x, x^{\prime}\right), & \frac{1}{n} \leq t \leq 1-\frac{1}{n}, \\ \min \left\{f\left(t, x, x^{\prime}\right), f\left(1-\frac{1}{n}, x, x^{\prime}\right)\right\}, 1-\frac{1}{n} \leq t,\end{cases}$
correspondingly we can define
$A_{n} x(t)=\int_{0}^{1} G(t, s) f_{n}\left(s, x(s), x^{\prime}(s)\right) d s, n \geq 2$.
Obviously, for any $n \geq 2$ we can see that $f_{n}\left(t, x, x^{\prime}\right)$ is continuous in $[0,1] \times[0,+\infty) \times[0,+\infty)$ and $f_{n}\left(t, x, x^{\prime}\right) \leq$ $f\left(t, x, x^{\prime}\right), P_{i, n}(t) \leq p_{i}(t)(i=1,2), A_{n}$ is relatively compact in K. For $R>0$, let $B_{R}=\{x \in K \mid\|x\| \leq R\}$, now we prove that A_{n} is approximate to A in B_{R}.

$$
\begin{align*}
& \left|A_{n} x(t)-A x(t)\right| \\
& \leq \int_{0}^{\frac{1}{n}} G(s, s)\left(f\left(s, x(s), x^{\prime}(s)\right)-f_{n}\left(s, x(s), x^{\prime}(s)\right)\right) d s \\
& +\int_{\frac{n-1}{n}}^{1} G(s, s)\left(f\left(s, x(s), x^{\prime}(s)\right)-f_{n}\left(s, x(s), x^{\prime}(s)\right)\right) d s \\
& \leq \int_{0}^{\frac{1}{n}} e(s)\left(p_{1}(s)-p_{1, n}(s)\right) q_{1}(x(s)) d s \\
& +\int_{0}^{\frac{1}{n}} e(s)\left(p_{2}(s)-p_{2, n}(s)\right) q_{2}\left(x^{\prime}(s)\right) d s \\
& +\int_{\frac{n-1}{n}}^{1} e(s)\left(p_{1}(s)-p_{1, n}(s)\right) q_{1}(x(s)) d s \\
& +\int_{\frac{n-1}{n}}^{1} e(s)\left(p_{2}(s)-p_{2, n}(s)\right) q_{2}\left(x^{\prime}(s)\right) d s \\
& \leq \max q_{1}[0,\|x\|]\left(\int_{0}^{\frac{1}{n}}+\int_{\frac{n-1}{n}}^{1}\right) e(s)\left(p_{1}(s)-p_{1, n}(s)\right) d s \\
& +\max q_{2}[0,\|x\|]\left(\int_{0}^{\frac{1}{n}}+\int_{\frac{n-1}{n}}^{1}\right) e(s)\left(p_{2}(s)-p_{2, n}(s)\right) d s . \tag{4}
\end{align*}
$$

By condition $0<\int_{0}^{1} e(s) p_{i}(s) d s<+\infty$ and $0<p_{i, n}(s) \leq$ $p_{i}(s)$, we can get $\left|A_{n} x(t)-A x(t)\right| \leq \epsilon(n \rightarrow \infty)$ which imply that A_{n} is approximate to A, so A is relatively compact in K.

Finally, we show that A has a fixed point. Let $\partial B_{a}=$ $\partial B(\theta, a) \bigcap K, \forall x \in \partial B_{a},\|x\|=a, A$ is a convex function, therefore $x(s) \in\left[g_{a}(s), a\right], s \in[0,1]$, by condition H_{2}

$$
\begin{align*}
\|A x\|= & \left\|\int_{0}^{1} G(t, s) f\left(s, x(s), x^{\prime}(s)\right)\right\| \\
\leq & \| \int_{0}^{1} e(s)\left(p_{1}(s) q_{1}(x(s)) d s \|\right. \\
& +\| \int_{0}^{1} e(s)\left(p_{2}(s) q_{2}\left(x^{\prime}(s)\right) d s \|\right. \\
& +\left\|\int_{0}^{1} e(s) r(s) d s\right\| \\
\leq & \int_{0}^{1} e(s) p_{1}(s) \max _{x \in\left[g_{a}(s), a\right]} q_{1}(x) d s \\
& +\int_{0}^{1} e(s) p_{2}(s) \max _{y \in\left[g_{a}(s), a\right]} q_{2}(y) d s \\
& +\int_{0}^{1} e(s) r(s) d s \\
< & a . \tag{5}
\end{align*}
$$

On the other hand, $\forall x \in \partial B_{b},\|x\|=b, x(s) \in\left[g_{b}(s), b\right]$,

$$
\begin{align*}
\|A x\| & =\left\|\int_{0}^{1} G(t, s) f\left(s, x(s), x^{\prime}(s)\right) d s\right\| \\
& \geq \int_{0}^{1} M e(s) \min _{x \in\left[g_{b}(s), b\right]} f\left(s, x(s), x^{\prime}(s)\right) d s \\
& \geq b \tag{6}
\end{align*}
$$

By lemma 2 , we can see that (1) has at least one solution . As an example,we consider the following problem

$$
\left\{\begin{align*}
x^{\prime \prime}(t) & =t^{-\frac{1}{2}} x+(1-t)^{-\frac{1}{2}} x^{\prime}+t, t \in(0,1) \tag{7}\\
x(0) & =x(1)=0,
\end{align*}\right.
$$

it is easy to see $\left(H_{1}\right)-\left(H_{3}\right)$ are all satisfied, according to
Theorem 2.1, the problem (7) has at least a solution .

References

[1] Zhang Yong. Positive solutions of singular sublinear Dirichlet boundary value problems. J Math. anal 1995;2(2)329-339.
[2] Wang Hongzhou,Ge Weigao. Positive solutions of singular second order boundary value problem. ACTA MATHEMATICA SINICA 1999;42(1)112-118.
[3] LiuYansheng.Positive solutions of singular differential equations in Ba nach Space. ACTA MATHEMATICA SINICA 2004;47:131-140.
[4] Wang Xinhua. Positive solutions of singular second order boundary value problem. Mathematics in Practice and Theory 2000;14:252-255.
[5] Guo Dajun.Nonlinear functional analysis.Shandong Publishong House Science and Technology ;2002:316.

[^0]: Xiguang Li is with the Department of Mathematics,Qingdao University of Science and Technology,Qingdao,266061,China .e-mail: lxg0417@tom.com.

