**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**32451

##### Unsteady Rayleigh-Bénard Convection of Nanoliquids in Enclosures

**Authors:**
P. G. Siddheshwar,
B. N. Veena

**Abstract:**

**Keywords:**
Enclosures,
free-free,
rigid-rigid and rigid-free boundaries,
Ginzburg-Landau model,
Lorenz model.

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1130533

**References:**

[1] E. Abu-Nada and A. J. Chamkha, Effect of nanofluid variable properties on natural convection in enclosures filled with a CuO-EG water nanofluid, Int. J. Therm. Sci., 49, pp. 2339-2352, 2010.

[2] H. C. Brinkman, The viscosity of concentrated suspensions and solutions, J. Chem. Phys., 20, pp. 571-571, 1952.

[3] J. Buongiorno, Convective transport in nanofluids, ASME J. Heat Trans., 128, pp. 240-250, 2006.

[4] S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Oxford University Press, London, 1961.

[5] S. Choi and J. A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, D. A. Siginer and H. P. Wang (Eds.), Development and applications of Non-Newtonian flows”, ASME, FED, 231 MD, 66, pp. 99-105, 1995.

[6] M. Corcione, Rayleigh-B´enard convection heat transfer in nanoparticle suspensions, Int. J. Heat Fluid Flow, 32, pp. 65-77, 2011.

[7] S. K. Das, N. Putra, P. Thiesen and W. Roetzel, Temperature dependence of thermal conductivity enhancement for nanofluids, ASME J. Heat Trans., 125, pp. 567-574, 2003.

[8] J. A. Eastman, S. U. S. Choi, S. Li, W. Yu and L. J. Thompson, Anomalously increased effective thermal conductivities of ethylene glycol-bases nanofluids containing copper nanoparticles, Appl. Phys. Lett., 78, pp. 718-720, 2001.

[9] B. Elhajjar, G. Bachir, A. Mojtabi, C. Fakih and M. C. Charrier-Mojtabi, Modeling of Rayleigh-B´enard natural convection heat transfer in nanofluids, C. R. Mecanique, 338, pp. 350-354, 2010.

[10] R. L. Hamilton and O. K. Crosser, Thermal conductivity of heterogeneous two-component systems, Ind. Eng. Chem. Fund., 1, pp. 187-191, 1962.

[11] R. Y. Jou and S. C. Tzeng, Numerical research of nature convective heat transfer enhancement filled with nanofluids in rectangular enclosures, Int. Comm. Heat Mass Trans., 33, pp. 727-736, 2006.

[12] K. Khanafer, K. Vafai and M. Lightstone, Buoyancy driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids, Int. J. Heat Mass Trans., 46, pp. 3639-3653, 2003.

[13] H. Masuda, A. Ebata, K. Teramae and N. Hishinuma, Alteration of thermal conductivity and viscosity of liquid by dispersing ultra fine particle, Netsu Bussei, 7, pp. 227-233, 1993.

[14] M. Nagata, Bifurcations at the Eckhaus points in two-dimensional Rayleigh-B´enard convection, Phys. Rev. E, 52, pp. 6141-6145, 1995.

[15] H. M. Park, Rayleigh-B´enard convection of nanofluids based on the pseudo-single-phase continuum model, Int. J. Therm. Sci., 90, pp. 267-278, 2015.

[16] P. G. Siddheshwar, C. Kanchana, Y. Kakimoto and A. Nakayama, Steady finite-amplitude Rayleigh-B´enard convection in nanoliquids using a two-phase model: Theoretical answer to the phenomenon of enhanced heat transfer, ASME J. Heat Trans., 139, pp. 012402-012411, 2017.

[17] P. G. Siddheshwar, and N. Meenakshi, Amplitude equation and heat transport for Rayleigh-B´enard convection in Newtonian liquids with nanoparticles, Int. J. Appl. Comp. Math., 2, pp. 1-22, 2016.

[18] R. K. Tiwari and M. K. Das, Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids, Int. J. Heat Mass Trans., 50, pp. 2002-2018, 2007.