**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**30132

##### Numerical Approach to a Mathematical Modeling of Bioconvection Due to Gyrotactic Micro-Organisms over a Nonlinear Inclined Stretching Sheet

**Authors:**
Madhu Aneja,
Sapna Sharma

**Abstract:**

**Keywords:**
Bioconvection,
inclined stretching sheet,
Gyrotactic
micro-organisms,
Brownian motion,
thermophoresis,
finite element
method.

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1474485

**References:**

[1] E. M. Abo-Eldahab, M. A. E. Aziz, Blowing/suction effect on hydromagnetic heat transfer by mixed convection from an inclined continuously stretching surface with internal heat generation/absorption, International Journal of Thermal Sciences, vol. 43 (7), 2004, pp. 709 – 719.

[2] B. C. Sakiadis, Boundary-layer behavior on continuous solid surfaces: I. boundary-layer equations for two-dimensional and axisymmetric flow, AIChE Journal, vol. 7 (1), 1961, pp. 26–28.

[3] P. S. Gupta, A. S. Gupta, Heat and mass transfer on a stretching sheet with suction or blowing, The Canadian Journal of Chemical Engineering, vol. 55 (6), 1977, pp. 744–746.

[4] E. M. A. Elbashbeshy, Heat transfer over a stretching surface with variable surface heat flux, Journal of Physics D: Applied Physics, vol. 31 (16), 1998, pp. 19-51.

[5] C.-K. Chen, M.-I. Char, Heat transfer of a continuous, stretching surface with suction or blowing, Journal of Mathematical Analysis and Applications, vol. 135 (2), 1988, pp. 568 – 580.

[6] T. C. Chiam, Micropolar fluid flow over a stretching sheet, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift fr Angewandte Mathematik und Mechanik, vol. 62 (10), 1982, pp. 565–568.

[7] I. Hassanien, R. S. R. Gorla, Mixed convection boundary layer flow of a micropolar fluid near a stagnation point on a horizontal cylinder, International Journal of Engineering Science, vol. 28 (2), 1990, pp. 153 – 161.

[8] N. Kelson, A. Desseaux, Effect of surface conditions on flow of a micropolar fluid driven by a porous stretching sheet, International Journal of Engineering Science vol. 39 (16), 2001, pp. 1881 – 1897.

[9] W. Khan, I. Pop, Boundary-layer flow of a nanofluid past a stretching sheet, International Journal of Heat and Mass Transfer, vol. 53 (1112), 2010, pp. 2477 – 2483.

[10] N. Hill, T. Pedley, Bioconvection, Fluid Dynamics Research, vol. 37 (12), 2005, pp. 1 – 20, biofluiddynamics.

[11] A. Avramenko, A. Kuznetsov, Stability of a suspension of gyrotactic microorganisms in superimposed fluid and porous layers, International Communications in Heat and Mass Transfer, vol. 31 (8), 2004, pp. 1057 – 1066.

[12] T. J. Pedley, N. A. Hill, J. O. Kessler (1988), The growth of bioconvection patterns in a uniform suspension of gyrotactic micro-organisms, Journal of Fluid Mechanics, vol. 195, 1988, pp. 223237.

[13] S. Ghorai, N. A. Hill (2000), Wavelengths of gyrotactic plumes in bioconvection, Bulletin of Mathematical Biology, vol. 62 (3), 2000, pp. 429–450.

[14] Li H, Liu S, Dai Z, Bao J, Yang X, Applications of nanomaterials in electrochemical enzyme biosensors, Sensors, vol. 9, 2009, pp. 8547–8561.

[15] H. S. Z. A. Munir, J. Wang, Dynamics of capturing process of multiple magnetic nanoparticles in a flow through microfluidic bioseparation system, IET Nanobiotechnol, vol. 3, 2009, pp. 55–64.

[16] D. Huh, B. D. Matthews, A. Mammoto, M. Montoya-Zavala, H. Y. Hsin, D. E. Ingber, Reconstituting organ-level lung functions on a chip, Science, vol. 328 (5986), 2010, pp. 1662–1668.

[17] A. Kuznetsov, The onset of nanofluid bioconvection in a suspension containing both nanoparticles and gyrotactic microorganisms, International Communications in Heat and Mass Transfer, vol. 37 (10), 2010, pp. 1421 – 1425.

[18] A. Kuznetsov, D. Nield, Double-diffusive natural convective boundary-layer flow of a nanofluid past a vertical plate, International Journal of Thermal Sciences, vol. 50 (5), 2011, pp. 712 – 717.

[19] A. Aziz, W. Khan, I. Pop, Free convection boundary layer flow past a horizontal flat plate embedded in porous medium filled by nanofluid containing gyrotactic microorganisms, International Journal of Thermal Sciences, vol. 56, 2012, pp. 48 – 57.

[20] W. Khan, O. Makinde, {MHD} nanofluid bioconvection due to gyrotactic microorganisms over a convectively heat stretching sheet, International Journal of Thermal Sciences, vol. 81, 2014, pp. 118 – 124.

[21] S. A. M. Mehryan, F. Moradi Kashkooli, M. Soltani, K. Raahemifar, Fluid flow and heat transfer analysis of a nanofluid containing motile gyrotactic micro-organisms passing a nonlinear stretching vertical sheet in the presence of a non-uniform magnetic field; numerical approach, PLOS ONE, vol. 11 (6), 2016, pp. 1–32.

[22] P. Rana, R. Bhargava, Flow and heat transfer of a nanofluid over a nonlinearly stretching sheet: A numerical study, Communications in Nonlinear Science and Numerical Simulation, vol. 17 (1), 2012, pp. 212 – 226.

[23] W. N. Mutuku, O. D. Makinde, Hydromagnetic bioconvection of nanofluid over a permeable vertical plate due to gyrotactic microorganisms, Computers & Fluids, vol. 95, 2014, pp. 88 – 97.