Search results for: Density of Electromagnetic Flow
593 Platform Urbanism: Planning towards Hyper-Personalisation
Authors: Provides Ng
Abstract:
Platform economy is a peer-to-peer model of distributing resources facilitated by community-based digital platforms. In recent years, digital platforms are rapidly reconfiguring the public realm using hyper-personalisation techniques. This paper aims at investigating how urban planning can leapfrog into the digital age to help relieve the rising tension of the global issue of labour flow; it discusses the means to transfer techniques of hyper-personalisation into urban planning for plasticity using platform technologies. This research first denotes the limitations of the current system of urban residency, where the system maintains itself on the circulation of documents, which are data on paper. Then, this paper tabulates how some of the institutions around the world, both public and private, digitise data, and streamline communications between a network of systems and citizens using platform technologies. Subsequently, this paper proposes ways in which hyper-personalisation can be utilised to form a digital planning platform. Finally, this paper concludes by reviewing how the proposed strategy may help to open up new ways of thinking about how we affiliate ourselves with cities.
Keywords: Platform urbanism, hyper-personalisation, urban residency, digital data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 669592 Aerodynamic Stall Control of a Generic Airfoil using Synthetic Jet Actuator
Authors: Basharat Ali Haider, Naveed Durrani, Nadeem Aizud, Salimuddin Zahir
Abstract:
The aerodynamic stall control of a baseline 13-percent thick NASA GA(W)-2 airfoil using a synthetic jet actuator (SJA) is presented in this paper. Unsteady Reynolds-averaged Navier-Stokes equations are solved on a hybrid grid using a commercial software to simulate the effects of a synthetic jet actuator located at 13% of the chord from the leading edge at a Reynolds number Re = 2.1x106 and incidence angles from 16 to 22 degrees. The experimental data for the pressure distribution at Re = 3x106 and aerodynamic coefficients at Re = 2.1x106 (angle of attack varied from -16 to 22 degrees) without SJA is compared with the computational fluid dynamic (CFD) simulation as a baseline validation. A good agreement of the CFD simulations is obtained for aerodynamic coefficients and pressure distribution. A working SJA has been integrated with the baseline airfoil and initial focus is on the aerodynamic stall control at angles of attack from 16 to 22 degrees. The results show a noticeable improvement in the aerodynamic performance with increase in lift and decrease in drag at these post stall regimes.Keywords: Active flow control, Aerodynamic stall, Airfoilperformance, Synthetic jet actuator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2311591 Application of Feed Forward Neural Networks in Modeling and Control of a Fed-Batch Crystallization Process
Authors: Petia Georgieva, Sebastião Feyo de Azevedo
Abstract:
This paper is focused on issues of nonlinear dynamic process modeling and model-based predictive control of a fed-batch sugar crystallization process applying the concept of artificial neural networks as computational tools. The control objective is to force the operation into following optimal supersaturation trajectory. It is achieved by manipulating the feed flow rate of sugar liquor/syrup, considered as the control input. A feed forward neural network (FFNN) model of the process is first built as part of the controller structure to predict the process response over a specified (prediction) horizon. The predictions are supplied to an optimization procedure to determine the values of the control action over a specified (control) horizon that minimizes a predefined performance index. The control task is rather challenging due to the strong nonlinearity of the process dynamics and variations in the crystallization kinetics. However, the simulation results demonstrated smooth behavior of the control actions and satisfactory reference tracking.
Keywords: Feed forward neural network, process modelling, model predictive control, crystallization process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1875590 A Procedure to Assess Streamflow Rating Curves and Streamflow Sequences
Authors: Elena Carcano, Mirzi Betasolo
Abstract:
This study aims to provide sub-hourly streamflow predictions and associated rating curves for small catchments of intermittent and torrential flow regime characterized by flash floods occurring especially during April and November. The methodology entails two lumped conceptual hydrological models which work in series. The total model is based upon eleven parameters and shows good flexibility in handling different input sets. Runoff Coefficient has contributed to improving the model’s performances and has been treated as an additional parameter; while Sensitivity Analysis has highlighted how slight changes in the model’s input can lead to changes in model’s output. The adopted procedure is steady and useful to give very practical engineering information at the expense of a parsimonious request both in input data and in the number of adopted parameters. According to the obtained results, the authors encourage the test of this combined procedure on different hydrological scenarios in order to provide information for poorly monitored catchments and not updated sites.
Keywords: Streamflow rating curve, chronological data, streamflow sequences, conceptual models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 420589 Effects of Superheating on Thermodynamic Performance of Organic Rankine Cycles
Authors: Kyoung Hoon Kim
Abstract:
Recently ORC(Organic Rankine Cycle) has attracted much attention due to its potential in reducing consumption of fossil fuels and its favorable characteristics to exploit low-grade heat sources. In this work thermodynamic performance of ORC with superheating of vapor is comparatively assessed for various working fluids. Special attention is paid to the effects of system parameters such as the evaporating temperature and the turbine inlet temperature on the characteristics of the system such as maximum possible work extraction from the given source, volumetric flow rate per 1 kW of net work and quality of the working fluid at turbine exit as well as thermal and exergy efficiencies. Results show that for a given source the thermal efficiency increases with decrease of the superheating but exergy efficiency may have a maximum value with respect to the superheating of the working fluid. Results also show that in selection of working fluid it is required to consider various criteria of performance characteristics as well as thermal efficiency.Keywords: organic Rankine cycle (ORC), low-grade energysource, Patel-Teja equation, thermodynamic performance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2901588 Physicochemical Characterization of Waste from Vegetal Extracts Industry for Use as Briquettes
Authors: Maíra O. Palm, Cintia Marangoni, Ozair Souza, Noeli Sellin
Abstract:
Wastes from a vegetal extracts industry (cocoa, oak, Guarana and mate) were characterized by particle size, proximate and ultimate analysis, lignocellulosic fractions, high heating value, thermal analysis (Thermogravimetric analysis – TGA, and Differential thermal analysis - DTA) and energy density to evaluate their potential as biomass in the form of briquettes for power generation. All wastes presented adequate particle sizes to briquettes production. The wastes showed high moisture content, requiring previous drying for use as briquettes. Cocoa and oak wastes had the highest volatile matter contents with maximum mass loss at 310 ºC and 450 ºC, respectively. The solvents used in the aroma extraction process influenced in the moisture content of the wastes, which was higher for mate due to water has been used as solvent. All wastes showed an insignificant loss mass after 565 °C, hence resulting in low ash content. High carbon and hydrogen contents and low sulfur and nitrogen contents were observed ensuring a low generation of sulfur and nitrous oxides. Mate and cocoa exhibited the highest carbon and lignin content, and high heating value. The dried wastes had high heating value, from 17.1 MJ/kg to 20.8 MJ/kg. The results indicate the energy potential of wastes for use as fuel in power generation.
Keywords: Agro-industrial waste, biomass, briquettes, combustion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1038587 Numerical Optimization of Trapezoidal Microchannel Heat Sinks
Authors: Yue-Tzu Yang, Shu-Ching Liao
Abstract:
This study presents the numerical simulation of three-dimensional incompressible steady and laminar fluid flow and conjugate heat transfer of a trapezoidal microchannel heat sink using water as a cooling fluid in a silicon substrate. Navier-Stokes equations with conjugate energy equation are discretized by finite-volume method. We perform numerical computations for a range of 50 ≦ Re ≦ 600, 0.05W ≦ P ≦ 0.8W, 20W/cm2 ≦q"≦ 40W/cm2. The present study demonstrates the numerical optimization of a trapezoidal microchannel heat sink design using the response surface methodology (RSM) and the genetic algorithm method (GA). The results show that the average Nusselt number increases with an increase in the Reynolds number or pumping power, and the thermal resistance decreases as the pumping power increases. The thermal resistance of a trapezoidal microchannel is minimized for a constant heat flux and constant pumping power.
Keywords: Microchannel heat sinks, Conjugate heat transfer, Optimization, Genetic algorithm method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2159586 Direct Power Control Strategies for Multilevel Inverter Based Custom Power Devices
Authors: S. Venkateshwarlu, B. P. Muni, A. D. Rajkumar, J. Praveen
Abstract:
Custom power is a technology driven product and service solution which embraces a family devices such as Dynamic Voltage Restorer (DVR), Distributed Shunt Compensator (DSTATCOM), Solid State Breaker (SSB) etc which will provide power quality functions at distribution voltages. The rapid response of these devices enables them to operate in real time, providing continuous and dynamic control of the supply including voltage and reactive power regulation, harmonic reduction and elimination of voltage dips. This paper presents the benefits of multilevel inverters when they are used for DPC based custom power devices. Power flow control mechanism, salient features, advantages and disadvantages of direct power control (DPC) using lookup table, SVM, predictive voltage vector and hybrid DPC strategies are discussed in this paper. Simulation results of three level inverter based STATCOM, harmonic analysis of multi level inverters are presented at the end.Keywords: DPC, DPC-SVM, Dynamic voltage restorer, DSTATCOM, Multilevel inverter, PWM Converter, PDPC, VF-DPC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2963585 Influence of Pier Modification Techniques for Reducing Scour around Bridge Piers
Authors: Rashid Farooq, Abdul Razzaq Ghumman, Hashim Nisar Hashmi
Abstract:
Bridge piers often fail all over the world and the whole structure may be endangered due to scouring phenomena. Scouring has been linked to catastrophic failures that lead into the loss of human lives. Various techniques have been employed to extenuate the scouring process in order to assist the bridge designs. Pier modifications plays vital role to control scouring at the vicinity of the pier. This experimental study aims at monitoring the effectiveness of pier modification and temporal development of scour depth around a bridge pier by providing a collar, a cable or openings under the same flow conditions. Provision of a collar around the octagonal pier reduced more scour depth than that for other two configurations. Providing a collar around the octagonal pier found to be the best in reducing scour. The scour depth in front of pier was found to be 19.5% less than that at the octagonal pier without any modifications. Similarly, the scour depth around the octagonal pier having provision of a cable was less than that at pier with provision of openings. The scour depth around an octagonal pier was also compared with a plain circular pier and found to be 9.1% less.
Keywords: Scour, octagonal pier, collar, cable, openings.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1148584 A Survey on Supply Chain Management and E Commerce Technology Adoption among Logistics Service Providers in Johor
Authors: Mohd Iskandar bin Illyas Tan, Iziati Saadah bt Ibrahim
Abstract:
Logistics is part of the supply chain processes that plans, implements, and controls the efficient and effective forward and reverse flow and storage of goods, services, and related information between the point of origin and the point of consumption in order to meet customer requirements. This research aims to investigate the current status and future direction of the use of Information Technology (IT) for logistics, focusing on Supply Chain Management (SCM) and E-Commerce adoption in Johor. Therefore, this research stresses on the type of technology being adopted, factors, benefits and barriers affecting the innovation in SCM and ECommerce technology adoption among Logistics Service Providers (LSP). A mailed questionnaire survey was conducted to collect data from 265 logistics companies in Johor. The research revealed that SCM technology adoption among LSP was higher as they had adopted SCM technology in various business processes while they perceived a high level of benefits from SCM adoption. Obviously, ECommerce technology adoption among LSP is relatively low.
Keywords: E-Commerce, Johor, Logistics Service Providers, Supply Chain Management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3116583 Optimization of GAMM Francis Turbine Runner
Authors: Sh. Derakhshan, A. Mostafavi
Abstract:
Nowadays, the challenge in hydraulic turbine design is the multi-objective design of turbine runner to reach higher efficiency. The hydraulic performance of a turbine is strictly depends on runner blades shape. The present paper focuses on the application of the multi-objective optimization algorithm to the design of a small Francis turbine runner. The optimization exercise focuses on the efficiency improvement at the best efficiency operating point (BEP) of the GAMM Francis turbine. A global optimization method based on artificial neural networks (ANN) and genetic algorithms (GA) coupled by 3D Navier-Stokes flow solver has been used to improve the performance of an initial geometry of a Francis runner. The results show the good ability of optimization algorithm and the final geometry has better efficiency with initial geometry. The goal was to optimize the geometry of the blades of GAMM turbine runner which leads to maximum total efficiency by changing the design parameters of camber line in at least 5 sections of a blade. The efficiency of the optimized geometry is improved from 90.7% to 92.5%. Finally, design parameters and the way of selection have been considered and discussed.Keywords: Francis Turbine, Runner, Optimization, CFD
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3344582 Phenotypes of B Cells Differ in EBV-positive Burkitt-s lymphoma Derived Cell Lines
Authors: Irina Spaka, Rita Birkenfelde, Svetlana Kozireva, Jevgenija Osmjana, Madara Upmane, ElenaKashuba, Irina Kholodnyuk Holodnuka
Abstract:
Epstein-Barr virus (EBV) is implicated in the pathogenesis of the endemic Burkitt-s lymphoma (BL). The EBVpositive BL-derived cell lines initially maintain the original tumor phenotype of EBV infection (latency I, LatI), but most of them drift toward a lymphoblast phenotype of EBV latency III (LatIII) during in vitro culturing. The aim of the present work was to characterize the B-cell subsets in EBV-positive BL cell lines and to verify whether a particular cell subset correlates with the type of EBV infection. The phenotype analysis of two EBV-negative and eleven EBV-positive (three of LatI and eight of LatIII) BL cell lines was performed by polychromatic flow cytomery, based on expression pattern of CD19, CD10, CD38, CD27, and CD5 markers. Two cell subsets, CD19+CD10+ and CD19+CD10-, were defined in LatIII BL cell lines. In both subsets, the CD27 and CD5 cell surface expression was detected in a proportion of the cells.
Keywords: B-cell subsets, Burkitt's lymphoma cell lines, EBV latency, phenotype profiles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1958581 Broadcasting Mechanism with Less Flooding Packets by Optimally Constructing Forwarding and Non-Forwarding Nodes in Mobile Ad Hoc Networks
Authors: R. Reka, R. S. D. Wahidabanu
Abstract:
The conventional routing protocol designed for MANET fail to handle dynamic movement and self-starting behavior of the node effectively. Every node in MANET is considered as forward as well receiver node and all of them participate in routing the packet from source to the destination. While the interconnection topology is highly dynamic, the performance of the most of the routing protocol is not encouraging. In this paper, a reliable broadcast approach for MANET is proposed for improving the transmission rate. The MANET is considered with asymmetric characteristics and the properties of the source and destination nodes are different. The non-forwarding node list is generated with a downstream node and they do not participate in the routing. While the forwarding and non-forwarding node is constructed in a conventional way, the number of nodes in non-forwarding list is more and increases the load. In this work, we construct the forwarding and non-forwarding node optimally so that the flooding and broadcasting is reduced to certain extent. The forwarded packet is considered as acknowledgements and the non-forwarding nodes explicitly send the acknowledgements to the source. The performance of the proposed approach is evaluated in NS2 environment. Since the proposed approach reduces the flooding, we have considered functionality of the proposed approach with AODV variants. The effect of network density on the overhead and collision rate is considered for performance evaluation. The performance is compared with the AODV variants found that the proposed approach outperforms all the variants.
Keywords: Flooding, Forwarded Nodes, MANET, Non-forwarding nodes, Routing protocols.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2026580 Implementation and Demonstration of Software-Defined Traffic Grooming
Authors: Lei Guo, Xu Zhang, Weigang Hou
Abstract:
Since the traditional network is closed and it has no architecture to create applications, it has been unable to evolve with changing demands under the rapid innovation in services. Additionally, due to the lack of the whole network profile, the quality of service cannot be well guaranteed in the traditional network. The Software Defined Network (SDN) utilizes global resources to support on-demand applications/services via open, standardized and programmable interfaces. In this paper, we implement the traffic grooming application under a real SDN environment, and the corresponding analysis is made. In our SDN: 1) we use OpenFlow protocol to control the entire network by using software applications running on the network operating system; 2) several virtual switches are combined into the data forwarding plane through Open vSwitch; 3) An OpenFlow controller, NOX, is involved as a logically centralized control plane that dynamically configures the data forwarding plane; 4) The traffic grooming based on SDN is demonstrated through dynamically modifying the idle time of flow entries. The experimental results demonstrate that the SDN-based traffic grooming effectively reduces the end-to-end delay, and the improvement ratio arrives to 99%.
Keywords: NOX, OpenFlow, software defined network, traffic grooming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1029579 An Efficient Passive Planar Micromixer with Finshaped Baffles in the Tee Channel for Wide Reynolds Number Flow Range
Authors: C. A. Cortes-Quiroz, A. Azarbadegan, E. Moeendarbary
Abstract:
A new design of a planar passive T-micromixer with fin-shaped baffles in the mixing channel is presented. The mixing efficiency and the level of pressure loss in the channel have been investigated by numerical simulations in the range of Reynolds number (Re) 1 to 50. A Mixing index (Mi) has been defined to quantify the mixing efficiency, which results over 85% at both ends of the Re range, what demonstrates the micromixer can enhance mixing using the mechanisms of diffusion (lower Re) and convection (higher Re). Three geometric dimensions: radius of baffle, baffles pitch and height of the channel define the design parameters, and the mixing index and pressure loss are the performance parameters used to optimize the micromixer geometry with a multi-criteria optimization method. The Pareto front of designs with the optimum trade-offs, maximum mixing index with minimum pressure loss, is obtained. Experiments for qualitative and quantitative validation have been implemented.
Keywords: Computational fluids dynamics, fin-shaped baffle, mixing strategies, multi-objective optimization, passive micromixer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1987578 Six Sigma-Based Optimization of Shrinkage Accuracy in Injection Molding Processes
Authors: Sky Chou, Joseph C. Chen
Abstract:
This paper focuses on using six sigma methodologies to reach the desired shrinkage of a manufactured high-density polyurethane (HDPE) part produced by the injection molding machine. It presents a case study where the correct shrinkage is required to reduce or eliminate defects and to improve the process capability index Cp and Cpk for an injection molding process. To improve this process and keep the product within specifications, the six sigma methodology, design, measure, analyze, improve, and control (DMAIC) approach, was implemented in this study. The six sigma approach was paired with the Taguchi methodology to identify the optimized processing parameters that keep the shrinkage rate within the specifications by our customer. An L9 orthogonal array was applied in the Taguchi experimental design, with four controllable factors and one non-controllable/noise factor. The four controllable factors identified consist of the cooling time, melt temperature, holding time, and metering stroke. The noise factor is the difference between material brand 1 and material brand 2. After the confirmation run was completed, measurements verify that the new parameter settings are optimal. With the new settings, the process capability index has improved dramatically. The purpose of this study is to show that the six sigma and Taguchi methodology can be efficiently used to determine important factors that will improve the process capability index of the injection molding process.
Keywords: Injection molding, shrinkage, six sigma, Taguchi parameter design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1385577 Numerical Investigation on the Interior Wind Noise of a Passenger Car
Authors: Liu Ying-jie, Lu Wen-bo, Peng Cheng-jian
Abstract:
With the development of the automotive technology and electric vehicle, the contribution of the wind noise on the interior noise becomes the main source of noise. The main transfer path which the exterior excitation is transmitted through is the greenhouse panels and side windows. Simulating the wind noise transmitted into the vehicle accurately in the early development stage can be very challenging. The basic methodologies of this study were based on the Lighthill analogy; the exterior flow field around a passenger car was computed using unsteady Computational Fluid Dynamics (CFD) firstly and then a Finite Element Method (FEM) was used to compute the interior acoustic response. The major findings of this study include: 1) The Sound Pressure Level (SPL) response at driver’s ear locations is mainly induced by the turbulence pressure fluctuation; 2) Peaks were found over the full frequency range. It is found that the methodology used in this study could predict the interior wind noise induced by the exterior aerodynamic excitation in industry.
Keywords: Wind noise, computational fluid dynamics, finite element method, passenger car.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 861576 Experimental Study of Open Water Non-Series Marine Propeller Performance
Authors: M. A. Elghorab, A. Abou El-Azm Aly, A. S. Elwetedy, M. A. Kotb
Abstract:
Later marine propeller is the main component of ship propulsion system. For a non-series propeller, it is difficult to indicate the open water marine propeller performance without an experimental study to measure the marine propeller parameters. In the present study, the open water performance of a non-series marine propeller has been carried out experimentally. The geometrical aspects of a commercial non-series marine propeller have been measured for a propeller blade area ratio of 0.3985. The measured propeller performance parameters were the thrust and torque coefficients for different propeller rotational speed and different water channel flow velocity, then the open water performance for the propeller has been plotted. In addition, a direct comparison between the obtained experimental results and a theoretical study of a B-series marine propeller of the same blade area ratio has been carried out. A correction factor has been introduced to apply the operating conditions of the experimental results to that of the theoretical study for the studied marine propeller.Keywords: Advance speed, marine propeller, open water performance, thrust coefficient, torque coefficient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3353575 Dynamics of a Vapour Bubble inside a Vertical Rigid Cylinder in the Absence of Buoyancy Forces
Authors: S. Mehran, S. Rouhi, F.Rouzbahani, E. Haghgoo
Abstract:
In this paper, growth and collapse of a vapour bubble generated due to a local energy input inside a rigid cylinder and in the absence of buoyancy forces is investigated using Boundary Integral Equation Method and Finite Difference Method .The fluid is treated as potential flow and Boundary Integral Equation Method is used to solve Laplace-s equation for velocity potential. Different ratios of the diameter of the rigid cylinder to the maximum radius of the bubble are considered. Results show that during the collapse phase of the bubble inside a vertical rigid cylinder, two liquid micro jets are developed on the top and bottom sides of the vapour bubble and are directed inward. It is found that by increasing the ratio of the cylinder diameter to the maximum radius of the bubble, the rate of the growth and collapse phases of the bubble increases and the life time of the bubble decreases.Keywords: Vapour bubble, Vertical rigid cylinder, Boundaryelement method, Finite difference method, Buoyancy forces.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1576574 A Novel Method to Manufacture Superhydrophobic and Insulating Polyester Nanofibers via a Meso-Porous Aerogel Powder
Authors: Z. Mazrouei-Sebdani, A. Khoddami, H. Hadadzadeh, M. Zarrebini
Abstract:
In this research, waterglass based aerogel powder was prepared by sol–gel process and ambient pressure drying. Inspired by limited dust releasing, aerogel powder was introduced to the PET electrospinning solution in an attempt to create required bulk and surface structure for the nanofibers to improve their hydrophobic and insulation properties. The samples evaluation was carried out by measuring density, porosity, contact angle, heat transfer, FTIR, BET, and SEM. According to the results, porous silica aerogel powder was fabricated with mean pore diameter of 24 nm and contact angle of 145.9º. The results indicated the usefulness of the aerogel powder confined into nanofibers to control surface roughness for manipulating superhydrophobic nanowebs with water contact angle of 147º. It can be due to a multi-scale surface roughness which was created by nanowebs structure itself and nanofibers surface irregularity in presence of the aerogels while a layer of fluorocarbon created low surface energy. The wettability of a solid substrate is an important property that is controlled by both the chemical composition and geometry of the surface. Also, a decreasing trend in the heat transfer was observed from 22% for the nanofibers without any aerogel powder to 8% for the nanofibers with 4% aerogel powder. The development of thermal insulating materials has become increasingly more important than ever in view of the fossil energy depletion and global warming that call for more demanding energysaving practices.
Keywords: Superhydrophobicity, Insulation, Sol-gel, Surface energy, Roughness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2968573 Numerical Investigation of Non Fourier Heat Conduction in a Semi-infinite Body due to a Moving Concentrated Heat Source Composed with Radiational Boundary Condition
Authors: M. Akbari, S. Sadodin
Abstract:
In this paper, the melting of a semi-infinite body as a result of a moving laser beam has been studied. Because the Fourier heat transfer equation at short times and large dimensions does not have sufficient accuracy; a non-Fourier form of heat transfer equation has been used. Due to the fact that the beam is moving in x direction, the temperature distribution and the melting pool shape are not asymmetric. As a result, the problem is a transient threedimensional problem. Therefore, thermophysical properties such as heat conductivity coefficient, density and heat capacity are functions of temperature and material states. The enthalpy technique, used for the solution of phase change problems, has been used in an explicit finite volume form for the hyperbolic heat transfer equation. This technique has been used to calculate the transient temperature distribution in the semi-infinite body and the growth rate of the melt pool. In order to validate the numerical results, comparisons were made with experimental data. Finally, the results of this paper were compared with similar problem that has used the Fourier theory. The comparison shows the influence of infinite speed of heat propagation in Fourier theory on the temperature distribution and the melt pool size.Keywords: Non-Fourier, Enthalpy technique, Melt pool, Radiational boundary condition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1980572 NaCl Erosion-Corrosion of Mild Steel under Submerged Impingement Jet
Authors: M. Sadique, S. Ainane, Y. F. Yap, P. Rostron, E. Al Hajri
Abstract:
The presence of sand in production lines in the oil and gas industries causes material degradation due to erosion-corrosion. The material degradation caused by erosion-corrosion in pipelines can result in a high cost of monitoring and maintenance and in major accidents. The process of erosion-corrosion consists of erosion, corrosion, and their interactions. Investigating and understanding how the erosion-corrosion process affects the degradation process in certain materials will allow for a reduction in economic loss and help prevent accidents. In this study, material loss due to erosion-corrosion of mild steel under impingement of sand-laden water at 90˚ impingement angle is investigated using a submerged impingement jet (SIJ) test. In particular, effects of jet velocity and sand loading on TWL due to erosion-corrosion, weight loss due to pure erosion and erosion-corrosion interactions, at a temperature of 29-33 °C in sea water environment (3.5% NaCl), are analyzed. The results show that the velocity and sand loading have a great influence on the removal of materials, and erosion is more dominant under all conditions studied. Changes in the surface characteristics of the specimen after impingement test are also discussed.
Keywords: Erosion-corrosion, flow velocity, jet impingement, sand loading.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1607571 Mathematical Simulation of Bubble Column Slurry Reactor for Direct Dimethyl Ether Synthesis Process from Syngas
Authors: Zhen Chen, Haitao Zhang, Weiyong Ying, Dingye Fang
Abstract:
Based on a global kinetics of direct dimethyl ether (DME) synthesis process from syngas, a steady-state one-dimensional mathematical model for the bubble column slurry reactor (BCSR) has been established. It was built on the assumption of plug flow of gas phase, sedimentation-dispersion model of catalyst grains and isothermal chamber regardless of reaction heats and rates for the design of an industrial scale bubble column slurry reactor. The simulation results indicate that higher pressure and lower temperature were favorable to the increase of CO conversion, DME selectivity, products yield and the height of slurry bed, which has a coincidence with the characteristic of DME synthesis reaction system, and that the height of slurry bed is lessen with the increasing of operation temperature in the range of 220-260℃. CO conversion, the optimal operation conditions in BCSR were proposed.
Keywords: Alcohol/ether fuel, bubble column slurry reactor, global kinetics, mathematical model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2625570 Gas Injection Transport Mechanism for Shale Oil Recovery
Authors: Chinedu Ejike
Abstract:
The United States is now energy self-sufficient due to the production of shale oil reserves. With more than half of it being tapped daily in the United States, these unconventional reserves are massive and provide immense potential for future energy demands. Drilling horizontal wells and fracking are the primary methods for developing these reserves. Regrettably, recovery efficiency is rarely greater than 10%. Gas injection enhanced oil recovery offers a significant benefit in optimizing recovery of shale oil. This could be either through huff and puff, gas flooding, and cyclic gas injection. Methane, nitrogen, and carbon (IV) oxide, among other high-pressure gases, can be injected. Operators use Darcy's law to assess a reservoir's productive capacity, but they are unaware that the law may not apply to shale oil reserves. This is due to the fact that, unlike pressure differences alone, diffusion, concentration, and gas selection all play a role in the flow of gas injected into the wellbore. The reservoir drainage and oil sweep efficiency rates are determined by the transport method. This research evaluates the parameters that influence gas injection transport mechanism. Understanding the process could accelerate recovery by two to three times.
Keywords: enhanced oil recovery, gas injection, shale oil, transport mechanism, unconventional reservoir
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 563569 Using Manipulating Urban Layouts to Enhance Ventilation and Thermal Comfort in Street Canyons
Authors: Su Ying-Ming
Abstract:
High density of high rise buildings in urban areas lead to a deteriorative Urban Heat Island Effect, gradually. This study focuses on discussing the relationship between urban layout and ventilation comfort in street canyons. This study takes Songjiang Nanjing Rd. area of Taipei, Taiwan as an example to evaluate the wind environment comfort index by field measurement and Computational Fluid Dynamics (CFD) to improve both the quality and quantity of the environment. In this study, different factors including street blocks size, the width of buildings, street width ratio and the direction of the wind were used to discuss the potential of ventilation. The environmental wind field was measured by the environmental testing equipment, Testo 480. Evaluation of blocks sizes, the width of buildings, street width ratio and the direction of the wind was made under the condition of constant floor area with the help of Stimulation CFD to adjust research methods for optimizing regional wind environment. The results of this study showed the width of buildings influences the efficiency of outdoor ventilation; improvement of the efficiency of ventilation with large street width was also shown. The study found that Block width and H/D value and PR value has a close relationship. Furthermore, this study showed a significant relationship between the alteration of street block geometry and outdoor comfortableness.
Keywords: Urban ventilation path, ventilation efficiency indices, CFD, building layout.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1047568 Modeling Ambient Carbon Monoxide Pollutant Due to Road Traffic
Authors: Anjaneyulu M.V.L.R., Harikrishna M., Chenchuobulu S.
Abstract:
Rapid urbanization, industrialization and population growth have led to an increase in number of automobiles that cause air pollution. It is estimated that road traffic contributes 60% of air pollution in urban areas. A case by case assessment is required to predict the air quality in urban situations, so as to evolve certain traffic management measures to maintain the air quality levels with in the tolerable limits. Calicut city in the state of Kerala, India has been chosen as the study area. Carbon Monoxide (CO) concentration was monitored at 15 links in Calicut city and air quality performance was evaluated over each link. The CO pollutant concentration values were compared with the National Ambient Air Quality Standards (NAAQS), and the CO values were predicted by using CALINE4 and IITLS and Linear regression models. The study has revealed that linear regression model performs better than the CALINE4 and IITLS models. The possible association between CO pollutant concentration and traffic parameters like traffic flow, type of vehicle, and traffic stream speed was also evaluated.Keywords: CO pollution, Modelling, Traffic stream parameters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2366567 Exergy Analysis of Combined Cycle of Air Separation and Natural Gas Liquefaction
Authors: Hanfei Tuo, Yanzhong Li
Abstract:
This paper presented a novel combined cycle of air separation and natural gas liquefaction. The idea is that natural gas can be liquefied, meanwhile gaseous or liquid nitrogen and oxygen are produced in one combined cryogenic system. Cycle simulation and exergy analysis were performed to evaluate the process and thereby reveal the influence of the crucial parameter, i.e., flow rate ratio through two stages expanders β on heat transfer temperature difference, its distribution and consequent exergy loss. Composite curves for the combined hot streams (feeding natural gas and recycled nitrogen) and the cold stream showed the degree of optimization available in this process if appropriate β was designed. The results indicated that increasing β reduces temperature difference and exergy loss in heat exchange process. However, the maximum limit value of β should be confined in terms of minimum temperature difference proposed in heat exchanger design standard and heat exchanger size. The optimal βopt under different operation conditions corresponding to the required minimum temperature differences was investigated.
Keywords: combined cycle simulation, exergy analysis, natural gas liquefaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2794566 Phase Error Accumulation Methodology for On-Chip Cell Characterization
Authors: Chang Soo Kang, In Ho Im, Sergey Churayev, Timour Paltashev
Abstract:
This paper describes the design of new method of propagation delay measurement in micro and nanostructures during characterization of ASIC standard library cell. Providing more accuracy timing information about library cell to the design team we can improve a quality of timing analysis inside of ASIC design flow process. Also, this information could be very useful for semiconductor foundry team to make correction in technology process. By comparison of the propagation delay in the CMOS element and result of analog SPICE simulation. It was implemented as digital IP core for semiconductor manufacturing process. Specialized method helps to observe the propagation time delay in one element of the standard-cell library with up-to picoseconds accuracy and less. Thus, the special useful solutions for VLSI schematic to parameters extraction, basic cell layout verification, design simulation and verification are announced.Keywords: phase error accumulation methodology, gatepropagation delay, Processor Testing, MEMS Testing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1499565 Comparative Analysis of Turbulent Plane Jets from a Sharp-Edged Orifice, a Beveled-Edge Orifice and a Radially Contoured Nozzle
Authors: Ravinesh C. Deo
Abstract:
This article investigates through experiments the flow characteristics of plane jets from sharp-edged orifice-plate, beveled-edge and radially contoured nozzle. The first two configurations exhibit saddle-backed velocity profiles while the third shows a top-hat. A vena contracta is found for the jet emanating from orifice at x/h » 3 while the contoured case displays a potential core extending to the range x/h = 5. A spurt in jet pressure on the centerline supports vena contracta for the orifice-jet. Momentum thicknesses and integral length scales elongate linearly with x although the growth of the shear-layer and large-scale eddies for the orifice are greater than the contoured case. The near-field spectrum exhibits higher frequency of the primary eddies that concur with enhanced turbulence intensity. Importantly, highly “turbulent” state of the orifice-jet prevails in the far-field where the spectra confirm more energetic secondary eddies associated with greater flapping amplitude of the orifice-jet.
Keywords: Orifice, beveled-edge-orifice, radially contoured nozzle, plane jets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2679564 Computational Fluid Dynamics Simulation of Gas-Liquid Phase Stirred Tank
Authors: Thiyam Tamphasana Devi, Bimlesh Kumar
Abstract:
A Computational Fluid Dynamics (CFD) technique has been applied to simulate the gas-liquid phase in double stirred tank of Rushton impeller. Eulerian-Eulerian model was adopted to simulate the multiphase with standard correlation of Schiller and Naumann for drag co-efficient. The turbulence was modeled by using standard k-ε turbulence model. The present CFD model predicts flow pattern, local gas hold-up, and local specific area. It also predicts local kLa (mass transfer rate) for single impeller. The predicted results were compared with experimental and CFD results of published literature. The predicted results are slightly over predicted with the experimental results; however, it is in reasonable agreement with other simulated results of published literature.Keywords: Eulerian-Eulerian, gas-hold up, gas-liquid phase, local mass transfer rate, local specific area, Rushton Impeller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1196